[1]
Mendlovic D. and Ozaktas H. M., Fractional Fourier transform and their optical implementation. I, J. Opt. Soc. Am. A, 1993, 10(9): 1875-1881.
DOI: 10.1364/josaa.10.001875
Google Scholar
[2]
Ozaktas H. M. and Mendlovic D., Fractional Fourier transform and their optical implementation. II, J. Opt. Soc. Am. A, 1993, 10(12): 2522-2531.
DOI: 10.1364/josaa.10.002522
Google Scholar
[3]
Lohmann A. W., Image rotation, Wigner rotating, and the fractional Fourier transform, J. Opt. Soc. Am. A, 1993, 10(10): 2181-2186.
DOI: 10.1364/josaa.10.002181
Google Scholar
[4]
Lohmann A. W., A fake zoom lens for fractional Fourier experiments, Opt. Commun., 1995, 115(5-6): 437-443.
DOI: 10.1016/0030-4018(95)00018-4
Google Scholar
[5]
Pellat-Finet P., Fresnel diffraction and the fractional-order Fourier transform, Opt. Lett., 1994, 19(18): 1388-1390.
DOI: 10.1364/ol.19.001388
Google Scholar
[6]
Zhou G. Q., Fractional Fourier transform of Lorentz beams, Chin. Phys. B, 2009, 18(7): 2779-2784.
DOI: 10.1088/1674-1056/18/7/026
Google Scholar
[7]
Zhou G., Fractional Fourier transform of Lorentz-Gauss beams, J. Opt. Soc. Am. A, 2009, 26(2): 350-355.
DOI: 10.1364/josaa.26.000350
Google Scholar
[8]
Zhou G., Fractional Fourier transform of Ince-Gaussian beams, J. Opt. Soc. Am. A, 2009, 26(12): 2586-2591.
DOI: 10.1364/josaa.26.002586
Google Scholar
[9]
Zhao C. and Cai Y., Propagation of a general-type beam through a truncated fractional Fourier transform optical system, J. Opt. Soc. Am. A, 2010, 27(3): 637-647.
DOI: 10.1364/josaa.27.000637
Google Scholar
[10]
Cai Y. and Lin Q., Properties of a flattened Gaussian beam in the fractional Fourier transform plane, J. Opt. A: Pure Appl. Opt., 2003, 5(3): 272-275.
DOI: 10.1088/1464-4258/5/3/321
Google Scholar
[11]
Du X. and Zhao D., Fractional Fourier transform of truncated elliptical Gaussian beams, Appl. Opt., 2006, 45(36): 9049-9052.
DOI: 10.1364/ao.45.009049
Google Scholar
[12]
Du X. and Zhao D., Fractional Fourier transform of off-axial elliptical cosh-Gaussian beams, Optik, 2008, 119(8): 379-382.
DOI: 10.1016/j.ijleo.2006.12.012
Google Scholar
[13]
Gao Y. Q., Zhu B. Q., Liu D. Z., andLin Z. Q., Fractional Fourier transform of flat-topped multi-Gaussian beams, J. Opt. Soc. Am. A, 2010, 27(2): 358-365.
DOI: 10.1364/josaa.27.000358
Google Scholar
[14]
Zheng C., Fractional Fourier transform for a hollow Gaussian beam, Phy. Lett. A, 2006, 355(2): 156-161.
DOI: 10.1016/j.physleta.2006.02.025
Google Scholar
[15]
Karimi E., Zito G., Piccirillo B., Marrucci L., and Santamato E., Hypergeometric-Gaussian modes, Opt. Lett. , 2007, 32(21): 3053-3055.
DOI: 10.1364/ol.32.003053
Google Scholar
[16]
Cai Y., Lu X., and Lin Q., Hollow Gaussian beams and their propagation properties, Opt. Lett. , 2003, 28(13): 1084-1086.
DOI: 10.1364/ol.28.001084
Google Scholar