Numerical Simulations of Fractional Fourier Transform of Hypergeometric-Gaussian Beam

Article Preview

Abstract:

The fractional Fourier transform (FRFT) of a new type of laser beams called the hypergeometric-Gaussian beam (HyGGB) is investigated in detail. The analytical expression for the FRFT of a HyGGB is derived. The properties of a HyGGB in the FRFT plane with different parameters are illustrated. The results show that the intensity distribution of a HyGGB in the FRFT plane strongly depends on the fractional order, the lens focal length and the initial beam width.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 765-767)

Pages:

780-784

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Mendlovic D. and Ozaktas H. M., Fractional Fourier transform and their optical implementation. I, J. Opt. Soc. Am. A, 1993, 10(9): 1875-1881.

DOI: 10.1364/josaa.10.001875

Google Scholar

[2] Ozaktas H. M. and Mendlovic D., Fractional Fourier transform and their optical implementation. II, J. Opt. Soc. Am. A, 1993, 10(12): 2522-2531.

DOI: 10.1364/josaa.10.002522

Google Scholar

[3] Lohmann A. W., Image rotation, Wigner rotating, and the fractional Fourier transform, J. Opt. Soc. Am. A, 1993, 10(10): 2181-2186.

DOI: 10.1364/josaa.10.002181

Google Scholar

[4] Lohmann A. W., A fake zoom lens for fractional Fourier experiments, Opt. Commun., 1995, 115(5-6): 437-443.

DOI: 10.1016/0030-4018(95)00018-4

Google Scholar

[5] Pellat-Finet P., Fresnel diffraction and the fractional-order Fourier transform, Opt. Lett., 1994, 19(18): 1388-1390.

DOI: 10.1364/ol.19.001388

Google Scholar

[6] Zhou G. Q., Fractional Fourier transform of Lorentz beams, Chin. Phys. B, 2009, 18(7): 2779-2784.

DOI: 10.1088/1674-1056/18/7/026

Google Scholar

[7] Zhou G., Fractional Fourier transform of Lorentz-Gauss beams, J. Opt. Soc. Am. A, 2009, 26(2): 350-355.

DOI: 10.1364/josaa.26.000350

Google Scholar

[8] Zhou G., Fractional Fourier transform of Ince-Gaussian beams, J. Opt. Soc. Am. A, 2009, 26(12): 2586-2591.

DOI: 10.1364/josaa.26.002586

Google Scholar

[9] Zhao C. and Cai Y., Propagation of a general-type beam through a truncated fractional Fourier transform optical system, J. Opt. Soc. Am. A, 2010, 27(3): 637-647.

DOI: 10.1364/josaa.27.000637

Google Scholar

[10] Cai Y. and Lin Q., Properties of a flattened Gaussian beam in the fractional Fourier transform plane, J. Opt. A: Pure Appl. Opt., 2003, 5(3): 272-275.

DOI: 10.1088/1464-4258/5/3/321

Google Scholar

[11] Du X. and Zhao D., Fractional Fourier transform of truncated elliptical Gaussian beams, Appl. Opt., 2006, 45(36): 9049-9052.

DOI: 10.1364/ao.45.009049

Google Scholar

[12] Du X. and Zhao D., Fractional Fourier transform of off-axial elliptical cosh-Gaussian beams, Optik, 2008, 119(8): 379-382.

DOI: 10.1016/j.ijleo.2006.12.012

Google Scholar

[13] Gao Y. Q., Zhu B. Q., Liu D. Z., andLin Z. Q., Fractional Fourier transform of flat-topped multi-Gaussian beams, J. Opt. Soc. Am. A, 2010, 27(2): 358-365.

DOI: 10.1364/josaa.27.000358

Google Scholar

[14] Zheng C., Fractional Fourier transform for a hollow Gaussian beam, Phy. Lett. A, 2006, 355(2): 156-161.

DOI: 10.1016/j.physleta.2006.02.025

Google Scholar

[15] Karimi E., Zito G., Piccirillo B., Marrucci L., and Santamato E., Hypergeometric-Gaussian modes, Opt. Lett. , 2007, 32(21): 3053-3055.

DOI: 10.1364/ol.32.003053

Google Scholar

[16] Cai Y., Lu X., and Lin Q., Hollow Gaussian beams and their propagation properties, Opt. Lett. , 2003, 28(13): 1084-1086.

DOI: 10.1364/ol.28.001084

Google Scholar