Performance Studies on Solar Photovoltaic Thermal System for Crop Drying

Article Preview

Abstract:

The growing population demands adequate supply of food grains for its sustenance and supporting life activities. The agricultural produce in India has increased over the years due to improved farm practices despite of which the country is ranked 2nd in terms of the number of children suffering malnutrition. It is reported that the child mortality rate in the country due to hunger and sanitation is above 1,000 per day. The post harvest losses in India are estimated at 4 to 6 percent for food grains and 16 to 18 percent for fruits and vegetables occurring at various stages of harvesting, storage and processing. The post harvest remedies for the loss of food grains and other agricultural produce includes better post harvest storage techniques based on removal of moisture to store the produce without being perished. The crop drying techniques based on use of renewable energy offer succor to save the large agricultural produce that goes to drains without being consumed.The reported work deals with design of a solar crop dryer for drying based on solar Photovoltaic/ Thermal (SPV/T) techniqueKeywordsPost harvest losses, solar crop drying, solar PV/T systems,drying rate

You might also be interested in these eBooks

Info:

Periodical:

Pages:

90-97

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Information on http: /www. theoildrum. com/node/8936.

Google Scholar

[2] X Zhanga, X Zhaoa, , S Smitha, J Xub, X Yu, Review of R&D progress and practical application of the solar photovoltaic/thermal (PV/T) technologies, Renewable and Sustainable Energy Reviews 16 (2012) 599– 617.

DOI: 10.1016/j.rser.2011.08.026

Google Scholar

[3] T. T. Chow, A Review on Photovoltaic/Thermal Hybrid Solar Technology, Applied Energy 2010; 87: 365–79.

Google Scholar

[4] A Braunstein, A Kornfold, The Development of Solar Photovoltaic and Thermal (PVT) Collector, IEEE Transactions on Energy Conversion, Vol. EC-1, No. 4, December 1986 31-33.

DOI: 10.1109/tec.1986.4765770

Google Scholar

[5] Information on ilin. asee. org/Conference2012/Papers/Saleh. pdf.

Google Scholar

[6] M., Wolf, Performance analyses of combined heating and photovoltaic power systems for residences. Energy Convesrion16, 79-90, (1976).

DOI: 10.1016/0013-7480(76)90018-8

Google Scholar

[7] E. C. Kern, M. C. Russell, Combined photovoltaic and thermal hybrid collector systems, in Proceedings of the 13th IEEE Photovoltaic Specialists, p.1153–1157, Washington DC, USA, June (1978).

Google Scholar

[8] L. W. Florschuetz, Extension of the Hottel-Whillier model to the analysis of combined photovoltaic/thermal flat plate collectors, Solar Energy, vol. 22, no. 4, p.361–366, (1979).

DOI: 10.1016/0038-092x(79)90190-7

Google Scholar

[9] S. D. Hendrie, Proc. of Int. Conf. ISES, May 28–June 1 Atlanta, Georgia, USA, pp.1865-1869(1979).

Google Scholar

[10] P. Raghuraman, Analytical predictions of liquid and air photovoltaic/thermal, flat-plate collector performance, Journal of Solar Energy Engineering 103, 1981, p.291–298.

DOI: 10.1115/1.3266256

Google Scholar

[11] P. R. Younger, W. S. Nowlan, M. J. Solomon, J. S. Strong, Combination photovoltaic/thermal solar collectors for residential applications. 15th IEEE Orlando.

Google Scholar

[12] A Braunstein, A Kornfold, On The Development of Solar Photovoltaic and Thermal (PVT) Collector, IEEE Transactions on Energy Conversion, Vol. EC-1, No. 4, December 1986 31-33.

DOI: 10.1109/tec.1986.4765770

Google Scholar

[13] S. N. Sharan, S. S. Mathur, T. C. Kandpal, Analysis of a combined Photovoltaic-Thermal System Consisting of a linear solar concentrator and a tubular absorber, Energy Convers. Mgmt Vol. 27, No. 1, pp.55-59, (1987).

DOI: 10.1016/0196-8904(87)90053-7

Google Scholar

[14] B. Ashokkumar, Study of a hybrid solar-solar air heater combined with solar cells, Energy Conversion Management, Vol. 31, No. 5 pp.471-479, (1991).

DOI: 10.1016/0196-8904(91)90028-h

Google Scholar

[15] J Prakash, Transient analysis of a Photovoltaic-Thermal Solar Collector for co-generation of Electricity and Hot Air/Water, Energy Convers. Mgmt Vol. 35, No. II, pp.967-972, (1994).

DOI: 10.1016/0196-8904(94)90027-2

Google Scholar

[16] T Takashima, Tt Anaka, T Dor, J Kamoshida, T Tani, T Horigome, New Proposal for Photovoltaic-Thermal Solar Energy Utilization Method, Solar Energy, Vol. 52. No. 3, pp.241-245. (1994).

DOI: 10.1016/0038-092x(94)90490-1

Google Scholar

[17] H. P. Garg, R. S. Adhikari, Conventional hybrid photovoltaic/thermal (PV/T) air heating collectors: steady-state simulation, Renewable Energy, Vol. 11, No. 3, pp.363-385, (1997).

DOI: 10.1016/s0960-1481(97)00007-4

Google Scholar

[18] H.P. Garg, R.S. Adhikari, System Performance Studies on a Photovoltaiclthermal (PV/T) Air Heating Collector, Renewable Energy 16 (1999) 725-730.

DOI: 10.1016/s0960-1481(98)00263-8

Google Scholar

[19] A.S. Joshi, A Tiwari, Energy and exergy efficiencies of a hybrid photovoltaic–thermal (PV/T) air collector, Renewable Energy 32 (2007) 2223–2241.

DOI: 10.1016/j.renene.2006.11.013

Google Scholar

[20] G. C. Gómez, Heat transfer in a photovoltaic panel, Project Report 2009, MVK 160, Heat and Mass Transport, May 11, (2009).

Google Scholar

[21] S Agrawal, G.N. Tiwari, Energy and exergy analysis of hybrid micro-channel photovoltaic thermal module, Solar Energy 85 (2011) 356–370.

DOI: 10.1016/j.solener.2010.11.013

Google Scholar

[22] R Kumar, M A. Rosen, Performance evaluation of a double pass PV/T solar air heater with and without fins, Applied Thermal Engineering 31 (2011) 1402-1410.

DOI: 10.1016/j.applthermaleng.2010.12.037

Google Scholar

[23] Y.L. Tsay, J.C. Cheng, H.F. Hong, Z.H. Shih, Characteristics of heat dissipation from photovoltaic cells on the bottom wall of a horizontal cabinet to ambient natural convective air stream, Energy 36 (2011) 3959-3967.

DOI: 10.1016/j.energy.2011.05.008

Google Scholar

[24] R Secchia, D Tempestia, J Smolkab, Effect of a back surface roughness on annual performance of an air-cooled PV module, Proceedings Of Ecos 2012 , The 25th International Conference On Efficiency, Cost, Optimization, Simulation And Environmental Impact Of Energy Systems June 26-29, 2012, Perugia, Italy.

DOI: 10.36253/978-88-6655-322-9

Google Scholar

[25] X Zhanga, X Zhaoa, , S Smitha, J Xub, X Yu, Review of R&D progress and practical application of the solar photovoltaic/thermal (PV/T) technologies, Renewable and Sustainable Energy Reviews 16 (2012) 599– 617.

DOI: 10.1016/j.rser.2011.08.026

Google Scholar

[26] M. Y. Othmana, B. Yatima, K Sopianb, M. N. A. Bakar, Performance studies on a finned double-pass photovoltaic-thermal (PV/T) solar collector, Desalination 209 (2007) 43–49.

DOI: 10.1016/j.desal.2007.04.007

Google Scholar

[27] A. Tiwari_, M.S. Sodha, A. Chandra, J.C. Joshi, Performance evaluation of photovoltaic thermal solar air collector for composite climate of India, Solar Energy Materials & Solar Cells 90 (2006) 175–189.

DOI: 10.1016/j.solmat.2005.03.002

Google Scholar

[28] P. Barnwal, A Tiwari, Design, Construction and Testing of Hybrid Photovoltaic Integrated Greenhouse dryer, International Journal of Agricultural Research, 3(2), 110, 120, (2008).

DOI: 10.3923/ijar.2008.110.120

Google Scholar

[29] S.C. Solanki, S Dubey, A Tiwari, Indoor simulation and testing of photovoltaic thermal (PV/T) air collectors, Applied Energy 86 (2009) 2421–2428Joshi et al. (2009).

DOI: 10.1016/j.apenergy.2009.03.013

Google Scholar

[30] A.S. Joshi ,A. Tiwari G.N. Tiwari , I. Dincer, B.V. Reddy, Performance evaluation of a hybrid photovoltaic thermal (PV/T) (glass-to-glass) system, International Journal of Thermal Sciences 48 (2009) 154–164.

DOI: 10.1016/j.ijthermalsci.2008.05.001

Google Scholar

[31] L. Jin, A Ibrahim, Y K Chean, R. Daghigh, H. R., S. Mat, M. Y. thman, K. Sopian, Evaluation of Single- Pass Photovoltaic- Thermal Air Colector with Rectangle Tunnel Absorber, American Journal of Applied Sciences 7(2): 277-282, 2010, Science Publications.

DOI: 10.3844/ajassp.2010.277.282

Google Scholar

[32] H.G. Teo, P.S. Lee, M.N.A. Hawlader, An active cooling system for photovoltaic modules, Applied Energy 90 (2012) 309–315.

DOI: 10.1016/j.apenergy.2011.01.017

Google Scholar

[33] Ionut¸ Razvan Caluianu, Florin Baltaretu, Thermal modelling of a photovoltaic module under variable free convection conditions, Applied Thermal Engineering 33-34 (2012) 86- 91.

DOI: 10.1016/j.applthermaleng.2011.09.016

Google Scholar

[34] N. S. Kumar, K. Matty, E. Rita, W. Simon, A. Ortrun, C. Alex, W. Roland, G. Tim, M. T. Kumar H. Experimental validation of a heat transfer model for concentrating photovoltaic system.

DOI: 10.1016/j.applthermaleng.2011.09.031

Google Scholar