Theory of Small Machine Tools: A Framework Approach to Machine Development

Article Preview

Abstract:

Enabled by their size, small machine tools manufacturing small workpieces allow for a leap of improvements and therefore overcome current limitations in micro manufacturing. Nevertheless, to achieve those benefits the classically engineering mindset and machine tool design have to be overcome. Those ideas, the reasoning behind them and the corresponding conditions are laid down in the so called theory of small machine tools. The generic theory includes a framework approach to help in the process of machine development resulting in a new kind of miniaturized and function integrated machine tools. This conceptual contribution describes the idea, aspects, objectives and methodology pursued by the theory of small machine tools.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

293-300

Citation:

Online since:

September 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Qin, A. Brocket, Y. Ma, A. Razali, J. Zhao, C. Harrison, W. Pan, X. Dai, D. Loziak, Micro-manufacturing: research, technology outcomes and development issues, Int. J. Adv. Manuf. Technol. 47 (2010) 821–837.

DOI: 10.1007/s00170-009-2411-2

Google Scholar

[2] J.P. Wulfsberg, T. Redlich, P. Kohrs, Square foot manufacturing: a new production concept for micro manufacturing, Prod. Eng. 4(1) (2010) 75–83.

DOI: 10.1007/s11740-009-0193-x

Google Scholar

[3] Y. Okazaki, N. Mishima, K. Ashida, Microfactory–concept, history, and developments, J. Manuf. Sci. Eng. 126(4) (2004) 837–844.

DOI: 10.1115/1.1823491

Google Scholar

[4] Information on: http://www.wtec.org/micromfg/report/Micro-report.pdf

Google Scholar

[5] R. E. DeVor, S. G. Kapoor, J. Cao, K. F. Ehmann, Transforming the landscape of manufacturing: distributed manufacturing based on desktop manufacturing (DM)2, J. Manuf. Sci. Eng. 134(4) (2012) 041004.1-041004.11.

DOI: 10.1115/1.4006095

Google Scholar

[6] A. Hofmann, G. Bretthauer, N. Siltala, R. Tuokko, Evolvable micro production systems: specific needs and differences to macro, ISAM (2011).

DOI: 10.1109/isam.2011.5942361

Google Scholar

[7] J. P. Wulfsberg, B. Röhlig, Paradigm change: small machine tools for small workpieces, Prod. Eng. (2013) currently being published.

DOI: 10.1007/s11740-013-0457-3

Google Scholar

[8] P. Nyhuis, T. Heinen, G. Reinhart, C. Rimpau, E. Abele, Transformable production systems: theoretical background to the transformability of production systems, wt Werkstattstechnik online 1(2) (2008) 85–91.

DOI: 10.37544/1436-4980-2008-1-2-85

Google Scholar

[9] J. Lehmann, Kombinierte multifunktionale Arbeitsräume zur Restrukturierung der Mikroproduktion, Dissertation, Helmut Schmidt University, University of the Federal Armed Forces Hamburg (2007).

Google Scholar

[10] J. P. Wulfsberg, S. Grimske, P. Kohrs, N. Kong, Small machine tools for small work pieces: objectives and scientific approach of the DFG program 1476, wt Werkstattstechnik online 11(12) (2010) 886–891.

DOI: 10.37544/1436-4980-2010-11-12-886

Google Scholar

[11] D. Derfling, Einsatz von Industrierobotern als Koordinatenmessgeräte, Dissertation, Helmut Schmidt University, University of the Federal Armed Forces Hamburg (2013) submitted.

Google Scholar

[12] F. Vollertsen, D. Biermann, H. N. Hansen, I. S. Jawahir, K. Kuzman, Size effects in manufacturing of metallic components, CIRP Annals Manuf. Technol., 58(2) (2009) 566-587.

DOI: 10.1016/j.cirp.2009.09.002

Google Scholar

[13] F. Vollertsen, Prozessskalierung, Tagungsband des 2. Kolloquiums Prozessskalierung im Rahmen des DFG Schwerpunktprogramms Prozessskalierung, Strahltechnik, Band 27, BIAS Verlag, Bremen, 2005.

Google Scholar

[14] G. Simons, C. Weippert, J. Dual, J. Villain, Size effects in tensile testing of thin cold rolled and annealed Cu foils, Material Sience and Engineering, A 416 (2006) 290-299.

DOI: 10.1016/j.msea.2005.10.060

Google Scholar

[15] A. Albers, P. Börsting, S. Matthiesen, Obstacles for cognitive analogy in analyses and synthesis in microsystem development, Microsys. Technol. 19 (2012) 371-378.

DOI: 10.1007/s00542-012-1627-5

Google Scholar

[16] P. Kohrs, Development and verification of a new feed unit for small machine tools, Dissertation, Helmut Schmidt University, University of the Federal Armed Forces Hamburg (2011).

Google Scholar

[17] The Association of German Engineers (VDI), VDI 2221, Systematic approach to the development and design of technical systems and products, 1993.

Google Scholar

[18] The Association of German Engineers (VDI), VDI 2206, Design methodology for mechatronic systems, 2004.

Google Scholar

[19] K. Ehrlenspiel, Integrierte Produktentwicklung, Hanser, Munich, 2009.

Google Scholar

[20] M. Meboldt, Mental and formal modelling, a contribution to the integrated product development model (iPeM), Dissertation, University of Karlsruhe(TH) (2008).

Google Scholar

[21] U. Lindemann, Methodische Entwicklung technischer Produkte, Springer, Berlin, 2005.

Google Scholar

[22] M. A. Orloff, Grundlagen der klassischen TRIZ, Springer, Berlin 2002.

Google Scholar

[23] A. Albers, J. Marz, N. Burkardt, Design Methodology in Micro Technology, 14th Int. Conf. on Eng. Design (2003).

Google Scholar

[24] L. Alting, F. Kimura, H. N. Hansen, G. Bissacco, Micro Engineering, CIRP Annals Manuf. Technol., 52(2) (2003) 635-657.

DOI: 10.1016/s0007-8506(07)60208-x

Google Scholar