Thin Film of Giant Magnetoresistance (GMR) Material Prepared by Sputtering Method

Article Preview

Abstract:

In recent decades, a new magnetic sensor based on magnetoresistance effect is highly researched and developed intensively. GMR material has great potential as next generation magnetic field sensing devices. It has also good magnetic and electric properties, and high potential to be developed into various applications of electronic devices such as: magnetic field sensor, current measurements, linear and rotational position sensor, data storage, head recording, and non-volatile magnetic random access memory. GMR material can be developed to be solid state magnetic sensors that are widely used in low field magnetic sensing applications. A solid state magnetic sensor can directly convert magnetic field into resistance, which can be easily detected by applying a sense current or voltage. Generally, there are many sensors for measuring the low magnetic field, such as: fluxgate sensor, Hall sensor, induction coil, GMR sensor, and SQUID sensor. Compared to other low magnetic field sensing techniques, solid state sensors have demonstrated many advantages, such as: small size (<0.1mm2), low power, high sensitivity (~0.1Oe) and good compatibility with CMOS technology. The thin film of GMR is usually prepared using: sputtering, electro deposition or molecular beam epitaxy (MBE) techniques. But so far, not many researchers reported the manufacture of thin film of GMR by dc-Opposed Target Magnetron Sputtering (dc-OTMS). In this paper, we inform the development of GMR thin film with sandwich and spin valve structures using dc-OTMS method. We have also developed organic GMR with Alq3 as a spacer layer.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1-9

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Daughton, J. Brown, R. Beech, A. Pohm, W. Kude, Magnetic Field Sensors Using GMR Multilayer, IEEE Trans. Magn. 30 (1994) 4608-4610.

DOI: 10.1109/20.334164

Google Scholar

[2] C. Smith, R. Schneider, T. Dogaru, S. Smith, GMR Magnetic sensor Arrays for NDE Eddy-current Testing, Review of progress in quantitative NDE, AIP Conf. Proc. 657 (2003) 419-426.

DOI: 10.1063/1.1570166

Google Scholar

[3] C. Reig, M.D.C. Beltran, D.R. Munoz, Magnetic Field Sensors Based on Giant Magnetoresistance (GMR) Technology: Application in Electrical Current Sensing, Sensors. 9 (2009) 7919-7942.

DOI: 10.3390/s91007919

Google Scholar

[4] R. Wood, Future hard disk drive systems, J Magn Magn Mater. 321 (2009) 555-561.

Google Scholar

[5] S. Tehrani, E. Chen, M. Durlam, T. Zhu, H. Goronlun, High Density Nonvolatile Magnetoresistive RAM, International Electron Devices Meeting (IEDM'96). (1996) 193-196.

DOI: 10.1109/iedm.1996.553152

Google Scholar

[6] T. Shinjo, Nanomagnetism and Spintronics, Elsevier, Oxford, 2009.

Google Scholar

[7] M. Djamal, Ramli, F. Haryanto, Khairurrijal, GMR Biosensors for Clinical Diagnostics, in: P.A. Serra (Ed.), Biosensors for Health, Environment and Biosecurity, InTech, Rijeka, Croatia, 2011, p.149 – 164.

DOI: 10.5772/16365

Google Scholar

[8] F. J. Himpsel, Electronic states in magnetic nanostructrures, IBM J. Res. Dev. 42 (1998). 33–42.

Google Scholar

[9] A.S. Penfold, Magnetron Sputtering, in D.A. Glocker, S.I. Shah (Eds.). Handbook of Thin Film Process Technology, (1995), Institute of Physics, College Park, MD, pp.1-26.

Google Scholar

[10] M.N. Baibich, J. M. Broto, A. Fert, N. van Dau, F. Petro, P. Eitenne, G. Creuzet, A. Friederich, J. Chazelas, Giant Magnetoresistance of (001)Fe/Cr(001) Magnetic Superlattice, Phys. Rev. Lett. 61 (1988) 2472-2475.

DOI: 10.1103/physrevlett.61.2472

Google Scholar

[11] M. Jergel, S. Luby, A. Anopchenko, E. Majkova, M. Spasova, V. Holy, M. Brunel, A. Luches, M. Martino, An interplay between the structure and giant magnetoresistance in laser treated Ag/Co multilayers, Superficies y Vacio. 8 (1999) 28-32.

DOI: 10.1016/s0304-8853(98)00613-1

Google Scholar

[12] D.K. Pandya, P. Gupta, S.C. Kashyap, S. Chaudhary, Electrodeposition and characterization of Cu/Co multilayers: Effect of individual Co and Cu layers on GMR magnitude and behavior, J. Magn. Magn. Mat. 321 (2009) 974–978.

DOI: 10.1016/j.jmmm.2008.03.020

Google Scholar

[13] P. Pascariu, S.I. Tanase, D. Pinzaru, V. Georgescu, Microstructure, Magnetic and Magnetoresistance Properties of Electrodeposited [Co/Zn]50 Multilayers, J. Supercond . Nov. Magn. 24 (2011)1917–1923.

DOI: 10.1007/s10948-011-1145-1

Google Scholar

[14] P. Shakya, B. Cox, D. Davis, Giant Magnetoresistance and Coercivity of electrodeposited multilayered FeCoNi/Cu and CrFeCoNi/Cu, J. Magn. Magn. Mat. 324 (2012) 453–459.

DOI: 10.1016/j.jmmm.2011.08.023

Google Scholar

[15] Y. Sugita, M. Satomi, Y. Kawawake, H. Sakakima, Enhancement of giant magnetoresistance in NiFeCo/Cu/Co with Ag capping layer prepared by sputering, Jpn. J. Appl. Phys. 37 (1998) 109-110.

DOI: 10.1143/jjap.37.109

Google Scholar

[16] T.L. Monchesky, R. Urban, B. Heinrich, M. Klaua, J. Kirschner, Giant magnetoresistance of Fe/Cu/Fe(001) trilayers grown directly on GaAs (001), J. Appl. Phys. 87 (2000) 5167-5169.

DOI: 10.1063/1.373283

Google Scholar

[17] W. Zou, H.N.G. Wadley, X.W. Zhou, R.A. Johnson, D. Brownell, Composition-Morphology-Property Relations for Giant Magnetoresistance Multilayers Grown By RF Diode Sputtering, Mat. Res. Soc. Symp. Proc. 674 (2001) T1.5.1-T1.5.6.

DOI: 10.1557/proc-674-t1.5

Google Scholar

[18] M. L. Yan, W. Y. Lai, Y. Z. Wang, S. X. Li, C. T. Yu, Giant magnetoresistance in Fe/Mo multilayers formed by magnetron sputtering, J. Appl. Phys. 77 (1995) 1816 – 1818.

DOI: 10.1063/1.358880

Google Scholar

[19] Ramli., M. Djamal, F. Haryanto, S. Viridi, Khairurrijal, Giant Magnetoresistance in (Ni60Co30Fe10/Cu) Trilayer Growth by Opposed Target Magnetron Sputtering, Advanced Materials Research. 535-537 (2012) 1319-1322.

DOI: 10.4028/www.scientific.net/amr.535-537.1319

Google Scholar

[20] M. Djamal, Ramli, Yulkifli, Khairurrijal, Effect of Cu Layer Thickness on Giant Magnetoresistance of NiCoFe/Cu/NiCoFe Sandwich, ICCAS-SICE Proceedings. (2009) Fokuoka, Japan.

DOI: 10.4028/www.scientific.net/amr.979.85

Google Scholar

[21] M. Naoe, Y. Hoshi, S. Yamanaka, Facing Targets Type of Sputtering Method for Deposition of Magnetic Metal Films at Low Temperature and High Rate, IEEE Trans. Magn. 18 (1980) 646-648.

DOI: 10.1109/tmag.1980.1060683

Google Scholar

[22] T. Saragi, Pengembangan Reaktor Opposed-Target Magnetron Sputtering (OTMS) untuk Penumbuhan Lapisan Tipis CoFe/Cu/CoFe, Disertasi Program Doktor, Institut Teknologi Bandung, (2005).

Google Scholar

[23] S. Maniv, W.D. Westwood, Calculation of current-voltage-pressure characteristics of dc diode sputtering discharge, J. Appl. Phys. 35 (1982) 856-860.

DOI: 10.1063/1.330550

Google Scholar

[24] S.S.P. Parkin, R. Bhadra, K.P. Roche, Oscillatory Magnetic Exchange Coupling through Thin Copper Layers, Phys. Rev. Lett. 66 (1991) 2152-2155.

DOI: 10.1103/physrevlett.66.2152

Google Scholar

[25] S. Tumanski, Thin Film Magnetoresistive Sensors, IoP Publishing Ltd, Bristol, 2001.

Google Scholar

[26] B. Dieny, Giant magnetoresistance in spin-valve multilayers, J. Magn. Magn. Mater. 136 (1994) 335-359.

DOI: 10.1016/0304-8853(94)00356-4

Google Scholar

[27] J. M. TeixeiraVentura, R.P. Fermento, J. P. Araujo, J. B. Sousa, S. C. Freitas, P. J. Freitas, Interlayer Coupling and Magnetoresistance of MnIr- Based Spin Valves: Dependencies on Deposition Rate, Spacer Thickness, and Temperature, IEEE Trans. Mag. 43 (2007) 3143-3145.

DOI: 10.1109/tmag.2007.897352

Google Scholar

[28] Z. H. Xiong, D. Wu, Z. V. Vardeny, J. Shi, Giant magnetoresistance in organic spin-valves, Nature. 427 (2004) 821-824.

DOI: 10.1038/nature02325

Google Scholar

[29] U. Niedermeier, M. Vieth, R. Patzold, W. Safert, H. von Seggern, Enhancement of organic magnetoresistance by electrical conditioning, Applied Physics Letters. 92 (2008), art.no.193309.

DOI: 10.1063/1.2924765

Google Scholar

[30] Z.H. Xiong, D. Wu, Z.V. Vardeny, J. Shi, Giant Magnetoresistance in Organic Spin-Valves, Nature. 427 (2004) 821-824.

DOI: 10.1038/nature02325

Google Scholar

[31] N. A. Morley, A. Rao, D. Dhandapani, M. R. J. Gibbs, M. Grell, T. Richardson, Room Temperature Organic Spintronics, Journal of Applied Physics 103 (2008) art.no.07F306.

DOI: 10.1063/1.2829245

Google Scholar

[32] V. Dediu, L. E. Hueso, I. Bergenti, A. Riminucci, F. Borgatti, P. Grazioski, C. Newby, F. Casoly, M. P. De Jong, C. Taliani, Y. Zhan, Room-Temperature Spintronic Effects in Alq3-based Hybrid Devices, Physical Review B 78 (2008) art.no.115203.

DOI: 10.1103/physrevb.78.115203

Google Scholar