Structural and Electronic Properties of Armchair GaN Nanoribbons with AlN Edges: First-Principles Study

Article Preview

Abstract:

Under the generalized gradient approximation (GGA), the structural and electronic properties of armchair GaN nanoribbons with AlN edges have been investigated by using the first-principles projector-augmented wave (PAW) potential within the density function theory (DFT) framework. The results reflect that the band gaps of the armchair GaN nanoribbons (AGaNNRs) are vibrated with the increasing ribbon width. For Al, Ga, H and N atom, the successively increasing electronegativity of 3.04, 2.1, 1.81 and 1.61 causes the successive increase of the charge density. These results are very useful for the applications of the AGaNNRs.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

101-104

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.H.C. Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov and A.K. Geim, Rev. Mod. Phys. 81 (2009), 109.

Google Scholar

[2] R. Saito, G. Dresselhaus and M.S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, London, UK, 1998).

DOI: 10.1016/s0921-5107(00)00444-x

Google Scholar

[3] H. Raza, Graphene Nanoelectronics: Metrology, Synthesis, Properties and Applications (Springer, Berlin-Heidelberg-New York, 2011).

Google Scholar

[4] P.R. Wallace, Phys. Rev. 71 (1947), 622.

Google Scholar

[5] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva and A.A. Firsov, Science 306 (2004), 666.

DOI: 10.1126/science.1102896

Google Scholar

[6] Y.B. Zhang, Y.W. Tan, H.L. Stormer and P. Kim, Nature 438 (2005), 201.

Google Scholar

[7] M.Y. Han, B. Özyilmaz, Y. Zhang and P. Kim, Phys. Rev. Lett. 98 (2007), 206805.

Google Scholar

[8] A.K. Geim and K.S. Novoselov, Nature Mater, 6 (2007), 183.

Google Scholar

[9] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos and A.A. Firsov, Nature, 438 (2005), 197.

DOI: 10.1038/nature04233

Google Scholar

[10] M. Ezawa, Phys. Rev. B 73 (2006), 045432.

Google Scholar

[11] Y.W. Son, M.L. Cohen and S.G. Louie, Phys. Rev. Lett. 97 (2006), 216803.

Google Scholar

[12] L.F. Colin, C. Frederik, L.A. Neil and H.H. John, Phys. Rev. Lett. 96 (2006), 066102.

Google Scholar

[13] A.J. Du, Z.H. Zhu, Y. Chen, G.Q. Lu and Sean C. Smith, Chem. Phys. Lett. 469 (2009), 183.

Google Scholar

[14] Z.H. Zhang and W.L. Guo, Phys. Rev. B 77 (2008), 075403.

Google Scholar

[15] M. Wu, X. Wu, Y. Pei and X.C. Zeng, Nano Res. 4 (2011), 233.

Google Scholar

[16] G. Kresse and D. Joubert, Phys. Rev. B 59 (1999) 1758.

Google Scholar

[17] G. Kresse and J. Hafner, Phys. Rev. B 47 (1993) 558.

Google Scholar

[18] G. Kresse and J. Hafner, Phys. Rev. B 49 (1994) 14251.

Google Scholar

[19] G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6 (1996) 15.

Google Scholar

[20] G. Kresse and J. Furthmüller, Phys. Rev. B 54 (1996) 11169.

Google Scholar

[21] J. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865.

Google Scholar

[22] J.M. Zhang, F.L. Zheng, Y. Zhang and V. Ji, J. Mater. Sci. 45 (2010), 3259.

Google Scholar