Nano Aluminum Powders Oxidation in CO2 and O2 Environments

Article Preview

Abstract:

An experimental study of oxidation of nano aluminum (Al) powders in CO2 and O2 is described. The oxidation is studied using thermogravimetric (TG) measurements from room temperature to 1500°C. Partially oxidized samples are recovered and their compositions are analyzed using X-ray diffraction. The oxidation product morphology was examined using SEM. Dimensional properties of aluminum particles have a significant influence on the oxidation processes. The nano aluminum reaction onset temperature was much lower than micro aluminum. Distinctly different oxidation properties of nano aluminum powders were shown between CO2 and O2. nano aluminum powders could ignite in O2 at fairly low temperatures around 530 °C. However ignition for nano aluminum powders in CO2 didn't appeared below 1500 °C. There was a weight loss in the TG curves at around 1200 °C for nano Al-CO2 system. It was thought that small amount of carbon formed in the oxidation process. The XRD showed that both the nano aluminum oxidation products were α-Al2O3 in CO2 and O2.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

113-117

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Mench M. M. ; Kuo K. K.; Yeh C. L.; Lu Y. C.: Combust. Sci. Technol. Vol. 135 (1998), p.269.

Google Scholar

[2] Brousseau P., Anderson C. J.: Propellants, Explos., Pyrotech. Vol. 27 (2002), p.300.

Google Scholar

[3] Patrick Brousseau. Detonation properties of explosives containing nanometric aluminum powder [A]. 12th international detonation symposium [C]. San Diego, (2002).

Google Scholar

[4] Pivkina A., Ulyanova P., Frolov Y.: J. Propellants, Explos., Pyrotech. Vol. 29 (2004) p.39.

Google Scholar

[5] Benkiewicz, K; Hayashi, A. K. Parametric studies of aluminum conbustion model for simulations of detonation waves. AIAA J. 2006, 44(3), 608-619.

DOI: 10.2514/1.20412

Google Scholar

[6] Desjardin, P. E.; Felske, J.D.; Carrara, M. D.: J. Propul. Power Vol. 40(2005) pp.46-53.

Google Scholar

[7] Trunov, M. A.; Schoenitz, M.; Dreizin, E. L.: Propellants, Explos., Pyrotech. Vol. 30 (2005) pp.36-43.

Google Scholar

[8] Trunov, M. A.; Schoenitz, M.; Dreizin, E. L. Combust. Flame Vol. 140(2005) p.310.

Google Scholar

[9] Katrina Brandstadt, David L. Frost, Janusz A. Kozinki. Preignition characteristics of nano- and micrometer-scale aluminum particles in Al-CO2 oxidation systems. Proceedings of the combustion institute 32, 2009, 1913-(1919).

DOI: 10.1016/j.proci.2008.08.014

Google Scholar

[10] Xiaoying Zhu, Mirko Schoenitz, Edward L.: J. Phys. Chemt. C Vol. 113 (2009) pp.6768-6773.

Google Scholar

[11] Ashish Rai, Donggen Lee, Kihong Park, etal.: J. Phys. Chemt. B Vol. 108 (2004) pp.14793-14795.

Google Scholar

[12] Mikhaylo A. Trunov, Swati M. Umbrajkar, Mirko Schoenitz.: J. Phys. Chemt. B Vol 110 (2006) pp.13094-13099.

Google Scholar

[13] I. G. Assovskii, A. N. Streletskii, V. I. Kolesnikov-Svinarev: Doklady Physical Chemistry Vol. 405 (2005) pp.235-239.

DOI: 10.1007/s10634-005-0068-6

Google Scholar