Fabrication and Electroluminescence of N-ZnO Nanorods/p-Si Nanowires Heterostructured Light-Emitting Diodes

Article Preview

Abstract:

The n-ZnO nanorods/p-Si nanowires heterojunction was fabricated by chemical method. The microstructure of the epitaxially grown ZnO nanorod was characterized by scanning electron microscopy, X-ray diffraction and transmission electron microscopy. The photoluminescence of the nanostructure showed a typical UV emission band and a defect-related emission band. Further, the electroluminescence of the nanostructure were measured, and the mechanism was discussed based on the band diagram of the n-ZnO nanorods/p-Si nanowires heterojunction.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

135-138

Citation:

Online since:

September 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. S. Gudlksen, L. J. Lauhon, J. F. Wang, D. V. Smith, and C. M. Lieber, Nature, 2002, 415, 617.

Google Scholar

[2] K. Q. Peng, Y. J. Yan, S. P. Gao, J. Zhu, Adv. Mater. 2002, 14, 1164.

Google Scholar

[3] Z. K. Tang, G. K. L. Wong, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinuma, Y. Segawa, Appl. Phys. Lett. 72, (1998) 3270.

DOI: 10.1063/1.121620

Google Scholar

[4] R. F. Service, Science. 276, (1997) 895.

Google Scholar

[5] D. Vanmaekelbergh, L. K. v. Vugt, Nonoscale. 3, (2011) 2783.

Google Scholar

[6] X. B. Cao, P. Chen, and Y. Guo, J. Phys. Chem. C, 112, (2008)20560.

Google Scholar

[7] Y. I. Alivov, J. E. V. Nostrand, D. C. Look, M. V. Chukichev, B. M. Ataev, Appl. Phys. Lett. 83, (2003)2943.

DOI: 10.1063/1.1615308

Google Scholar

[8] I. T. Drapak, Semiconductors 2, (1968) 624.

Google Scholar

[9] C. H. Chen, S. J. Chang, S. P. Chang, M. J. Li, I. C. Chen, T. J. Hsueh, C. L. Hsu, Appl. Phys. Lett. 95, (2009)223101.

Google Scholar

[10] H. K. Liang, S. F. Yu, H. Y. Yang, Appl. Phys. Lett. 97, (2010)241107.

Google Scholar

[11] J. D. Ye, S. L. Gu, S. M. Zhu, W. Liu, S. M. Liu, R. Zhang, Y. Shi, and Y. D. Zheng, Appl. Phys. Lett. 88, (2006) 182112.

Google Scholar

[12] Y. I. Alivov, E. V. Kalinina, A. E. Cherenkov, D. C. Look, B. M. Ataev, A. K. Omaev, M. V. Chukichev, D. M. Bagnall Appl. Phys. Lett. 83, (2003)4719.

DOI: 10.1063/1.1632537

Google Scholar

[13] K. K. Kim, S. D. Lee, H. Kim J. C. Park, S. N. Lee, Y. S. Park, S. J. Park, S. W. Kim, Appl. Phys. Lett. 94, (2009) 071118.

Google Scholar

[14] S. J. An, J. H. Chae, G. C. Yi, G. H. Park, Appl. Phys. Lett. 92, (2008) 121108.

Google Scholar

[15] S. W. Lee, H. D. Cho, G. Panin, T. W. Kang, Appl. Phys. Lett. 98, (2011) 093110.

Google Scholar

[16] J. L. Pau, J. Piqueras, D. J. Rogers, F. H. Teherani, K. Minder, R. McClintock, M. Razeghi, J. Appl. Phys. 107, (2010) 033719.

DOI: 10.1063/1.3305530

Google Scholar

[17] S. T. Tan, X. W. Sun, J. L. Zhao, S. Iwan, Z. H. Cen,T. P. Chen, J. D. Ye, G. Q. Lo, D. L. Kwong, K. L. Teo, Appl. Phys. Lett. 93, (2008) 013506.

DOI: 10.1063/1.2957465

Google Scholar

[18] W. I. Park, G. C. Yi, Adv. Mater. 16, (2004)87.

Google Scholar

[19] B. Ling, J. L. Zhao, X. W. Sun, S. T. Tan, A. K. K. Kyaw,Y. Divayana, Z. L. Dong, Appl. Phys. Lett. 97, (2010) 013101.

Google Scholar

[20] J. Dai, C. X. Xu, Z. L. Shi, R. Ding, J. Y. Guo, Z. H. Li, B. X. Gu, P. Wu, Optical Materials 33 (2011) 288.

Google Scholar