Experimental Investigation on Thermal Performance of Flat Plate Heat Pipe with Intersected Micro-Grooves

Article Preview

Abstract:

A copper-water flat plate heat pipe with intersected micro-grooves was developed for cooling electronic devices in this paper. The effects of heat flux, working fluid filling ratio and inclination angles on thermal performance of the flat plate heat pipe was tested and investigated. The laboratory tests show the optimal filling ratio of the heat pipe is about 65%. Excellent thermal performance is also observed in unfavorable titled positions including vertical and anti-gravity orientation at 65%. The smallest overall thermal resistance is obtained in horizontal position and the maximal thermal resistance is observed in vertical position. The influence of inclination angles on thermal performance of the heat pipe in both axial direction and radial direction is also investigated. As the heat pipe is tilted, the ability of temperature leveling in radial direction is enhanced, nevertheless, the capacity of heat transfer in radial direction decreased at the same time.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

480-486

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Zhang, Z.L. Liu and G.Y. Ma: J. of Engineering Thermophysics Vol. 29 (5) (2008), pp.818-820.

Google Scholar

[2] Z.X. Lin, Q. Ma, G.S. Wang and Z.H. Liu: IESC J. Vol. 61(1) (2010), pp.27-31.

Google Scholar

[3] F. Lefèvre, J.B. Conrardy, M. Raynaud and J. Bonjour: Applied Thermal Engineering Vol. (37) (2012), pp.95-102.

Google Scholar

[4] Y.M. Xuan, Y.P. Hong and Q. Li: Experimental Thermal and Fluid Sci. Vol. 28 (2004), p.249–255.

Google Scholar

[5] Y. Tang, R. Zhou, L.S. Lu and Z.C. Xie: Applied Thermal Engineering Vol. 36 (2012), pp.78-86.

Google Scholar

[6] M. Zhang, Z.L. Liu and G.Y. Ma: J. Engineering hermophysics Vol. 5 (2007), pp.823-825.

Google Scholar

[7] M. Zhang, Z.L. Liu and G.Y. Ma: Int. J. Thermal Sci. Vol. 47 (9) (2008), pp.1195-1203.

Google Scholar

[8] Y. Koito, H. Imura, M. Mochizuki, Y. Saito and S. Torii: Applied Thermal Engineering Vol. 26 (2006), pp.1669-1676.

DOI: 10.1016/j.applthermaleng.2005.11.012

Google Scholar

[9] S. J. Kim, J. K. Seo and K. H. Do: Int. J. Heat and Mass Transfer Vol. 46 (2003), p.2051-(2063).

Google Scholar

[10] M.L. Bai, Z.H. Kou, H. Wang and H.W. Yang: J. of Thermal Sci. and Technology Vol. 9 (1) (2010), pp.17-22.

Google Scholar

[11] Y. B. Liu: Cryogenics Vol. 3 (2010), pp.35-38.

Google Scholar

[12] M. Aghvami and A. Faghri: Applied Thermal Engineering Vol. 31(2011), pp.2645-2655.

Google Scholar

[13] S. Harmand, R. Sonan, M. Fakès and H. Hassan: Applied Thermal Engineering Vol. 31 (2011) pp.1877-1885.

DOI: 10.1016/j.applthermaleng.2011.02.034

Google Scholar

[14] S. Lips, F. Lefèvre and J. Bonjour: Int. J. of Thermal Sci. Vol. 50(7) (2011), pp.1243-1252.

Google Scholar

[15] J. Esarte, M. Domı́guez: Applied Thermal Engineering Vol. 23 (13) (2003), pp.1619-1627.

DOI: 10.1016/s1359-4311(03)00111-x

Google Scholar