Co-Combustion of Paper Mill Sludge and Bituminous Coal in Air Using Thermogravimetric Analyzer

Article Preview

Abstract:

The combustion of paper mill sludge and bituminous coal in air was analyzed using a thermogravimetric instrument. TG and DTG curves for the blends lies between that of the individual fuels, and the main combustion characteristics of blends depended on individual fuels and followed the weighted average. As the blending ratio of paper mill sludge was increased from 10% to 90%, the ignite temperature (Ti) decreased from 529.6°C. to 275.6°C., and residual weight increased from 19.28% to 47.39%. The TG profiles of sample were almost the same at different heating rates, however there was a big difference between the DTG profiles. The maximum weight loss rate of sample increased obviously with the increment of heating rate. This work contributes to the comprehensive understanding of paper mill sludge and bituminous coal combustion and development of co-combustion technology.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

487-494

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Liu, X. Q. Ma and H. M. Xiao, Waste Management, 2010, 30(7), 1206-1211.

Google Scholar

[2] R. T. Vesilind PA, Wastewater Management, 1992, 14, 189–196.

Google Scholar

[3] M. Otero, C. Diez, L. F. Calvo, A. I. Garcia and A. Moran, Biomass & Bioenergy, 2002, 22(4), 319-329.

DOI: 10.1016/s0961-9534(02)00012-0

Google Scholar

[4] W. L. E. Magalhaes, A. E. Job, C. A. Ferreira and H. D. da Silva, Journal of Analytical and Applied Pyrolysis, 2008, 82(2), 298-303.

Google Scholar

[5] D. Shin, S. Jang and J. Hwang, Waste Management, 2005, 25(7), 680-685.

Google Scholar

[6] J. Werther and T. Ogada, Progress in Energy and Combustion Science, 1999, 25(1), 55-116.

Google Scholar

[7] J. Corella and J. M. Toledo, Journal of Hazardous Materials, 2000, 80(1-3), 81-105.

Google Scholar

[8] Y. F. Liao and X. Q. Ma, Applied Energy, 2010, 87(11), 3526-3532.

Google Scholar

[9] Y. T. Tang, X. Q. Ma and Z. Y. Lai, Bioresource Technology, 2011, 102(2), 1879-1885.

Google Scholar

[10] H. M. Xiao, X. Q. Ma and Z. Y. Lai, Applied Energy, 2009, 86(9), 1741-1745.

Google Scholar

[11] A. A. Zuru, S. M. Dangoggo, U. A. Birnin-Yauri and A. D. Tambuwal, Renewable Energy, 2004, 29(1), 97-107.

DOI: 10.1016/s0960-1481(03)00074-0

Google Scholar

[12] M. E. Sanchez, M. Otero, X. Gomez and A. Moran, Renewable Energy, 2009, 34(6), 1622-1627.

Google Scholar

[13] S. P. Zou, Y. L. Wu, M. D. Yang, C. Li and J. M. Tong, Bioresource Technology, 2010, 101(1), 359-365.

Google Scholar

[14] A. Arenillas, F. Rubiera, C. Pevida and J. J. Pis, Journal of Analytical and Applied Pyrolysis, 2001, 58, 685-701.

DOI: 10.1016/s0165-2370(00)00183-2

Google Scholar

[15] A. Mendez, J. M. Fidalgo, F. Guerrero and G. Gasco, Journal of Analytical and Applied Pyrolysis, 2009, 86(1), 66-73.

Google Scholar

[16] D. Vamvuka, N. Salpigidou, E. Kastanaki and S. Sfakiotakis, Fuel, 2009, 88(4), 637-643.

DOI: 10.1016/j.fuel.2008.09.029

Google Scholar

[17] W. K. Buah, A. M. Cunliffe and P. T. Williams, Process Safety and Environmental Protection, 2007, 85(B5), 450-457.

Google Scholar