Mechanism of the Improvement in Microcrystalline Silicon Solar Cells by Hydrogen Plasma Treatment

Article Preview

Abstract:

We explain the experimental improvement in long wavelength response by hydrogen plasma treatment (HPT) in n/i interface. The absorption coefficient of the intrinsic microcrystalline silicon (μc-Si) is decreased in the low energy region (0.8~1.0 eV) by HPT, which indicates a lower defect density in μc-Si layer deposited with HPT than its counterpart without HPT. Simulation by one-dimensional device simulation program for the Analysis of Microelectronic and Photonic Structures (AMPS-1D) shows a higher long wavelength response in μc-Si solar cell if the defect density in intrinsic μc-Si layer is smaller. Our simulation results also disclose that the less defect density in intrinsic layer, the lower recombination rate and the higher electric field is. Higher electric field results in longer drift length which will promote collection of carriers generated by photons with long wavelength. Thus we deduce that HPT decreased defect density in absorber layer and improved the performance of μc-Si solar cells in long wavelength response.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

118-123

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Klein, F. Finger, R. Carius, T. Dylla, B. Rech, M. Grimm, L. Houben and M. Stutzmann: Thin Solid Films Vol. 430 (2003), p.202.

DOI: 10.1016/s0040-6090(03)00111-1

Google Scholar

[2] J. Meier, F. Fliickiger, H. Keppner, and A. Shah. : Appl. Phys. Lett. Vol. 65 (1994), pp.860-862.

Google Scholar

[3] H. B. Xiao, X.B. Zeng, X.B. Xie, P. Yang, W.B. Peng, S.Y. Liu, W. J. Yao, X.B. Liao, Y.H. Zuo and Q.M. Wang: Photovoltaic Specialists Conference (PVSC), 2011 37th IEEE,pp.000693-000695.

DOI: 10.1109/pvsc.2011.6186048

Google Scholar

[4] P. Torres, J. Meier, R. Fluckiger, S. D. Littelwood, I. E. Kelly and P. Giannoules: Appl. Phys. Lett. Vol. 69 (1996), pp.1373-1375.

Google Scholar

[5] J. Poortmans and Vladimir, in: Thin Film Solar Cells Fabrication, Characterization and Applications. edited by John Wiley& Sons, England (2006), p.159.

Google Scholar

[6] X.Y. Han, X.D. Zhag, G.F. Hou: ACTA ENERGIAE SOLARIS SINICA Vol. 29 (2008) pp.31-35.

Google Scholar

[7] J. Im, S. Il Park and J. Jeon: Solar Energy Materials and Solar Cells Vol. 95 (2011), p.150–153.

Google Scholar

[8] P. J. McElheny, J.K. Arch, H. –S. Lin and S.J. Fonash: J. Appl. Phys. Vol. 64 (1988), p.1254.

Google Scholar

[9] M. Ambrico, L. Schiavulli, T. Ligonzo, G. Cicala, P. Capezzuto, and G. Bruno: Thin Solid Films Vol. 383 (2001), pp.200-202.

DOI: 10.1016/s0040-6090(00)01582-0

Google Scholar

[10] J. Arch, J. Cuiffi and J.Y. Hou, A One-Dimensional Device Simulation Program for the Analysis of Microelectronic and Photonic Structures. p.10.

Google Scholar

[11] S. Y. Liu , X. B. Zeng and W. B. Peng: Journal of Non-Crystalline Solids Vol. 357 (2011), p.121–125.

Google Scholar

[12] J. Poortmans and Vladimir, in: Thin Film Solar Cells Fabrication, Characterization and Applications. edited by John Wiley& Sons, England (2006), p.149.

Google Scholar

[13] Y. IDE, Y. SAITO and A. YAMADA: Japanese Journal of Applied Physics Vol. 43 (2004), pp.2419-2424.

Google Scholar

[14] I. Cheng and S. Wagner: APPLIED PHYSICS LETTERS Vol. 80 (2002), pp.440-442.

Google Scholar

[15] M. Vukadinoviæ, F. Smole, and M. Topiè: JOURNAL OF APPLIED PHYSICS Vol. 96 (2004), pp.7289-7299.

Google Scholar

[16] M. Nath , P. Roca i Cabarrocas, E.V. Johnson: Thin Solid Films Vol. 516 (2008), p.6974–6978.

DOI: 10.1016/j.tsf.2007.12.052

Google Scholar

[17] A. Chowdhury, S. Mukhopadhyay, S. Ray: Thin Solid Films Vol. 516 (2008), p.6858–6862.

Google Scholar

[18] J. Poortmans and Vladimir, in: Thin Film Solar Cells Fabrication, Characterization and Applications. edited by John Wiley& Sons, England (2006), p.147.

Google Scholar