[1]
Shibata S: Chemistry and cancer preventing activities of ginseng saponins and some related triterpenoid compounds. The Korean Academy of Medical Sciences. 16: S28-37. (2001).
DOI: 10.3346/jkms.2001.16.s.s28
Google Scholar
[2]
Li W, Liu Y, Zhang J W, Ai C Z, et al: Anti-androgen-independent prostate cancer effects of ginsenoside metabolites In Vitro: Mechanism and possible structure-activity relationship investigation. Archives of Pharmacal Research. 32(1): 49-57. (2009).
DOI: 10.1007/s12272-009-1117-1
Google Scholar
[3]
Attele A S, Zhou Y P, Xie J T, Wu J A, Zhang L, et al.: Antidiabetic effects of Panax ginseng berry extract and the identification of an effective component. Diabetes. 51(6): 1851-8. (2002).
DOI: 10.2337/diabetes.51.6.1851
Google Scholar
[4]
Lim S, Cho C W, Choi U K, Kim Y C: Antioxidant activity and ginsenoside pattern of fermented white ginseng. Journal of Ginseng Research. 34(3): 168-174. (2010).
DOI: 10.5142/jgr.2010.34.3.168
Google Scholar
[5]
Park J, Cho J Y: Anti-inflammatory effects of ginsenosides from Panax ginseng and their structural analogs. African Journal of Biotechnology. 8 (16): 3682-3690. (2009).
Google Scholar
[6]
Pan S Y, Liu D Y, Zhong S Z, et al: The effect of 9 Kind of Ginsenosides on cultured spinal neurons from embryonic rat. Journal of Brain and Nervous Diseases. 8(6): 331-333. (2000).
Google Scholar
[7]
Chen, S., Luo, H., Li, Y., Sun, Y., Wu, Qi., Niu, Y: 454 EST analysis detects genes putatively involved in ginsenoside biosynthesis in Panax ginseng. Plant Cell Rep, 30, 1593–1601. (2011).
DOI: 10.1007/s00299-011-1070-6
Google Scholar
[8]
Abe I, Rohmer M, Prestwish G D:Enzymatic cyclization of squalene and oxidosqualene to sterols and triterpenes. Chemical Reviews. 93: 2189-2206. (1993).
DOI: 10.1021/cr00022a009
Google Scholar
[9]
Lee M H, Jeong H M, Seo J W, Shin C G, et al: Enhanced triterpene and phytosterol biosynthesis in Panax ginseng overexpressing squalene synthase gene. Plant Cell Physiol. 45: 976-984. (2004).
DOI: 10.1093/pcp/pch126
Google Scholar
[10]
Devarenne T P, Ghosh A, Chappell J: Regulation of squalene synthase, a key enzyme of sterol biosynthesis, in tobacco. Plant Physiology. 129: 1095–1106. (2002).
DOI: 10.1104/pp.001438
Google Scholar
[11]
Suzuki H, Achnine L, Xu R A, et al: A genomics approach to the early stages of triterpene saponin biosynthesis in Medicago truncatula. Journal of Plant. 32(6): 1033-1048. (2002).
DOI: 10.1046/j.1365-313x.2002.01497.x
Google Scholar
[12]
Choi D W, Jung J, Ha Y I, et al: Analysis of t ranscript s in methyl jasmonate treated ginseng hairy roots to identify genes involved in the biosynthesis of ginsenosides and other secondary metabolites. Plant Cell Reports. 23( 8) : 557-566. (2005).
DOI: 10.1007/s00299-004-0845-4
Google Scholar
[13]
Han J Y, In J G, Kwon Y S, et al: Regulation of ginsenoside and phytosterol biosynthesis by RNA interferences of squalene epoxidase gene in Panax ginseng. Phytochemistry. 71: 36-46. (2010).
DOI: 10.1016/j.phytochem.2009.09.031
Google Scholar
[14]
Xu R, Fazio G C, Matsuda S P T: On the origins of triterpenoid skeletal diversity. Phytochemistry. 65: 261–291. (2004).
DOI: 10.1016/j.phytochem.2003.11.014
Google Scholar
[15]
Han J L, Liu B Y, Ye H C, et al: Effects of overexpression of the endogenous farnesyl diphosphate synthase on the artemisinin content in Artemisia annual. Journal of Integrative Plant Biology. 48(4): 482-487. (2006).
DOI: 10.1111/j.1744-7909.2006.00208.x
Google Scholar
[16]
Phillips D R, Rasbery J M, Bartel B, Matsuda S P T: Biosynthetic diversity in plant triterpene cyclization. Current Opinion in plant Biology. 9: 305–314. (2006).
DOI: 10.1016/j.pbi.2006.03.004
Google Scholar
[17]
Kushiro T, Shibuya M, Ebizuka Y: β-amyrin synthase-cloning of oxidosqualene cyclase that catalyzes the formation of the most popular triterpene among higher plants. European Journal of Biochemistry. 256(1): 238–244. (1998).
DOI: 10.1046/j.1432-1327.1998.2560238.x
Google Scholar
[18]
Sawai S, Shindo T, Sato S, Kaneko T, Tabata S, Ayabe S, Aoki T: Functional and structural analysis of genes encoding oxidosqualene cyclases of Lotus japonicas. Plant Science. 170: 247–257. (2006).
DOI: 10.1016/j.plantsci.2005.08.027
Google Scholar
[19]
Shibuya M, Katsube Y, Otsuka M, Zhang H, Tansakul P, Xiang T, Ebizuka Y: Identification of a product specific β-Amyrin synthase from Arabidopsis thaliana. Plant Physiology and Biochemistry. 47: 26-30. (2009).
DOI: 10.1016/j.plaphy.2008.09.007
Google Scholar
[20]
Zhao S J, Hou C X, Liang Y L, et al: Cloning of ginseng β-AS gene and the construction of its antisense plant expression vector. China Biotechnology. 28(4): 74-77. (2008).
Google Scholar
[21]
Itoh T, Jeong M T, Hirano Y, Tamura T, Matsumoto T: Occurrence of lanosterol and lanostenol in seeds of red pepper (Capsicum annuum). Steroids. 29: 569-577. (1977).
DOI: 10.1016/0039-128x(77)90011-3
Google Scholar
[22]
Suzuki M, Xiang T, Ohyama K, Seki H, et al.: Lanosterol synthase in dicotyledonous plants[J]. Plant Cell Physiol. 47(5): 565-571. (2006).
DOI: 10.1093/pcp/pcj031
Google Scholar
[23]
Rees H H, Goad L J, Goodwin T W: 2, 3-oxidosqualene cycloartenol cyclase from Ochromonas malhamensis. Biochim. Biophys. Acta. 176(4): 892-4. (1969).
DOI: 10.1016/0005-2760(69)90274-4
Google Scholar
[24]
Lodeiro S, Schulz-Gasch T, Matsuda S P T: Enzyme redesign: two mutations cooperate to convert cycloartenol synthase into an accurate lanosterol synthase. Journal of the American Chemical Society. 127: 14132–14133. (2005).
DOI: 10.1021/ja053791j
Google Scholar
[25]
Corey, E. J., Matsuda, S. P. T. & Bartel, B: Isolation of an Arabidopsis thaliana gene encoding cycloartenol synthase by functional expression in a yeast mutant lacking lanosterol synthase by the use of a chromatographic screen. Proceedings of the National Academy of Sciences. 90: 11628-11632. (1993).
DOI: 10.1073/pnas.90.24.11628
Google Scholar
[26]
Goad L J. How is sterol synthesis regulated in higher plants?. Biochemical Society Transactions. 11(5): 548-552. (1983).
DOI: 10.1042/bst0110548
Google Scholar
[27]
Liang Y L, Zhao S J, Zhang X: Antisense suppression of cycloartenol synthase results in elevated ginsenoside levels in panax ginseng hairy roots. Plant Molecular Biology Reporter. 27: 298-304. (2009).
DOI: 10.1007/s11105-008-0087-7
Google Scholar