Progress in Understanding of the Key Enzyme Genes of Ginsenoside Biosynthesis in Panax ginseng

Article Preview

Abstract:

Ginsenosides, the major bioactive ingredients of P. ginseng can improve the anti-disease abilities of human being, and generate significant social and economic benefits. However, along with gradually or rapidly or dramatically increasing demand of the ginsenosides, extensive studies have focused on regulating the ginsenoside biosynthetic pathway on a genetic level. In this article, ginsenoside biosynthesis of key enzyme genes are described, including squalene synthase (SS), squalene epoxidase (SE), oxidosqualene cyclase (OSC), dammarenediol synthase (DS), β-amyrin synthase (β-AS), lanosterol synthase (LAS), cycloartenol synthase (CAS) and P450. Additionally, this review critically analyzes and evaluates the background and theoretical basis of the previous researches, as well as the deficiencies of these researches.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

374-379

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Shibata S: Chemistry and cancer preventing activities of ginseng saponins and some related triterpenoid compounds. The Korean Academy of Medical Sciences. 16: S28-37. (2001).

DOI: 10.3346/jkms.2001.16.s.s28

Google Scholar

[2] Li W, Liu Y, Zhang J W, Ai C Z, et al: Anti-androgen-independent prostate cancer effects of ginsenoside metabolites In Vitro: Mechanism and possible structure-activity relationship investigation. Archives of Pharmacal Research. 32(1): 49-57. (2009).

DOI: 10.1007/s12272-009-1117-1

Google Scholar

[3] Attele A S, Zhou Y P, Xie J T, Wu J A, Zhang L, et al.: Antidiabetic effects of Panax ginseng berry extract and the identification of an effective component. Diabetes. 51(6): 1851-8. (2002).

DOI: 10.2337/diabetes.51.6.1851

Google Scholar

[4] Lim S, Cho C W, Choi U K, Kim Y C: Antioxidant activity and ginsenoside pattern of fermented white ginseng. Journal of Ginseng Research. 34(3): 168-174. (2010).

DOI: 10.5142/jgr.2010.34.3.168

Google Scholar

[5] Park J, Cho J Y: Anti-inflammatory effects of ginsenosides from Panax ginseng and their structural analogs. African Journal of Biotechnology. 8 (16): 3682-3690. (2009).

Google Scholar

[6] Pan S Y, Liu D Y, Zhong S Z, et al: The effect of 9 Kind of Ginsenosides on cultured spinal neurons from embryonic rat. Journal of Brain and Nervous Diseases. 8(6): 331-333. (2000).

Google Scholar

[7] Chen, S., Luo, H., Li, Y., Sun, Y., Wu, Qi., Niu, Y: 454 EST analysis detects genes putatively involved in ginsenoside biosynthesis in Panax ginseng. Plant Cell Rep, 30, 1593–1601. (2011).

DOI: 10.1007/s00299-011-1070-6

Google Scholar

[8] Abe I, Rohmer M, Prestwish G D:Enzymatic cyclization of squalene and oxidosqualene to sterols and triterpenes. Chemical Reviews. 93: 2189-2206. (1993).

DOI: 10.1021/cr00022a009

Google Scholar

[9] Lee M H, Jeong H M, Seo J W, Shin C G, et al: Enhanced triterpene and phytosterol biosynthesis in Panax ginseng overexpressing squalene synthase gene. Plant Cell Physiol. 45: 976-984. (2004).

DOI: 10.1093/pcp/pch126

Google Scholar

[10] Devarenne T P, Ghosh A, Chappell J: Regulation of squalene synthase, a key enzyme of sterol biosynthesis, in tobacco. Plant Physiology. 129: 1095–1106. (2002).

DOI: 10.1104/pp.001438

Google Scholar

[11] Suzuki H, Achnine L, Xu R A, et al: A genomics approach to the early stages of triterpene saponin biosynthesis in Medicago truncatula. Journal of Plant. 32(6): 1033-1048. (2002).

DOI: 10.1046/j.1365-313x.2002.01497.x

Google Scholar

[12] Choi D W, Jung J, Ha Y I, et al: Analysis of t ranscript s in methyl jasmonate treated ginseng hairy roots to identify genes involved in the biosynthesis of ginsenosides and other secondary metabolites. Plant Cell Reports. 23( 8) : 557-566. (2005).

DOI: 10.1007/s00299-004-0845-4

Google Scholar

[13] Han J Y, In J G, Kwon Y S, et al: Regulation of ginsenoside and phytosterol biosynthesis by RNA interferences of squalene epoxidase gene in Panax ginseng. Phytochemistry. 71: 36-46. (2010).

DOI: 10.1016/j.phytochem.2009.09.031

Google Scholar

[14] Xu R, Fazio G C, Matsuda S P T: On the origins of triterpenoid skeletal diversity. Phytochemistry. 65: 261–291. (2004).

DOI: 10.1016/j.phytochem.2003.11.014

Google Scholar

[15] Han J L, Liu B Y, Ye H C, et al: Effects of overexpression of the endogenous farnesyl diphosphate synthase on the artemisinin content in Artemisia annual. Journal of Integrative Plant Biology. 48(4): 482-487. (2006).

DOI: 10.1111/j.1744-7909.2006.00208.x

Google Scholar

[16] Phillips D R, Rasbery J M, Bartel B, Matsuda S P T: Biosynthetic diversity in plant triterpene cyclization. Current Opinion in plant Biology. 9: 305–314. (2006).

DOI: 10.1016/j.pbi.2006.03.004

Google Scholar

[17] Kushiro T, Shibuya M, Ebizuka Y: β-amyrin synthase-cloning of oxidosqualene cyclase that catalyzes the formation of the most popular triterpene among higher plants. European Journal of Biochemistry. 256(1): 238–244. (1998).

DOI: 10.1046/j.1432-1327.1998.2560238.x

Google Scholar

[18] Sawai S, Shindo T, Sato S, Kaneko T, Tabata S, Ayabe S, Aoki T: Functional and structural analysis of genes encoding oxidosqualene cyclases of Lotus japonicas. Plant Science. 170: 247–257. (2006).

DOI: 10.1016/j.plantsci.2005.08.027

Google Scholar

[19] Shibuya M, Katsube Y, Otsuka M, Zhang H, Tansakul P, Xiang T, Ebizuka Y: Identification of a product specific β-Amyrin synthase from Arabidopsis thaliana. Plant Physiology and Biochemistry. 47: 26-30. (2009).

DOI: 10.1016/j.plaphy.2008.09.007

Google Scholar

[20] Zhao S J, Hou C X, Liang Y L, et al: Cloning of ginseng β-AS gene and the construction of its antisense plant expression vector. China Biotechnology. 28(4): 74-77. (2008).

Google Scholar

[21] Itoh T, Jeong M T, Hirano Y, Tamura T, Matsumoto T: Occurrence of lanosterol and lanostenol in seeds of red pepper (Capsicum annuum). Steroids. 29: 569-577. (1977).

DOI: 10.1016/0039-128x(77)90011-3

Google Scholar

[22] Suzuki M, Xiang T, Ohyama K, Seki H, et al.: Lanosterol synthase in dicotyledonous plants[J]. Plant Cell Physiol. 47(5): 565-571. (2006).

DOI: 10.1093/pcp/pcj031

Google Scholar

[23] Rees H H, Goad L J, Goodwin T W: 2, 3-oxidosqualene cycloartenol cyclase from Ochromonas malhamensis. Biochim. Biophys. Acta. 176(4): 892-4. (1969).

DOI: 10.1016/0005-2760(69)90274-4

Google Scholar

[24] Lodeiro S, Schulz-Gasch T, Matsuda S P T: Enzyme redesign: two mutations cooperate to convert cycloartenol synthase into an accurate lanosterol synthase. Journal of the American Chemical Society. 127: 14132–14133. (2005).

DOI: 10.1021/ja053791j

Google Scholar

[25] Corey, E. J., Matsuda, S. P. T. & Bartel, B: Isolation of an Arabidopsis thaliana gene encoding cycloartenol synthase by functional expression in a yeast mutant lacking lanosterol synthase by the use of a chromatographic screen. Proceedings of the National Academy of Sciences. 90: 11628-11632. (1993).

DOI: 10.1073/pnas.90.24.11628

Google Scholar

[26] Goad L J. How is sterol synthesis regulated in higher plants?. Biochemical Society Transactions. 11(5): 548-552. (1983).

DOI: 10.1042/bst0110548

Google Scholar

[27] Liang Y L, Zhao S J, Zhang X: Antisense suppression of cycloartenol synthase results in elevated ginsenoside levels in panax ginseng hairy roots. Plant Molecular Biology Reporter. 27: 298-304. (2009).

DOI: 10.1007/s11105-008-0087-7

Google Scholar