A Review on Utilization of Organic Matters in Activated Sludge

Article Preview

Abstract:

Activated sludge process has been applied worldwide in municipal and industrial wastewater treatment practices. Excess sewage sludge, produced in sedimentation after wastewater bio-treatment, is an inevitable by-product of wastewater treatment processes. In any case sludge treatment and disposal should always be considered as an integral part of treatment of wastewater. Currently, the most widely available options in the world are the agriculture utilization, the waste disposal sites, the land reclamation and restoration, the incineration and other novel uses. Extracellular polymeric substances (EPS), as high-molecular weight compounds are secreted by activated sludge microorganisms, which can significantly influence the physicochemical properties and function of activated sludge flocs. Because of the crucial roles of EPS, many researchers have been made to explore their chemical compositions and physicochemical properties. Polysaccharides, humic substances and proteins are usually found to be the major components of EPS. The present paper sought to review past and future trends in sludge handling, focusing mainly at the organic matters.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

353-361

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y.J. Wei, Y.S. Liu, Effects of sewage sludge compost application on crops and cropland in a 3-year field study, Chemosphere. 2005, 59: 1257–1265.

DOI: 10.1016/j.chemosphere.2004.11.052

Google Scholar

[2] P.L. McCarty. Sludge concentration-needs, accomplishments and future goals. J Water Pollut Control Fed 1966; 38: 493.

Google Scholar

[3] P. Chudoba, B. Capdeville. A possible way towards reduction of waste sludge production. Sixth IAWPRC Conference on Design and Operation of Large Wastewater Treatment Plants . Prague, (1991).

Google Scholar

[4] A. Bagreev, S. Bashkova, D.C. Locke, T.J. Bandosz, Sewage sludge-derived materials as efficient adsorbents for removal of hydrogen sulfide, Environ. Sci. Technol. 2001, 35: 1537–1543.

DOI: 10.1021/es001678h

Google Scholar

[5] N.J. Horan. Biological Wastewater Treatment Systems. Chichester, UK: Wiley, (1990).

Google Scholar

[6] Q.L. Zhao, G. Kugel. Thermophilic/mesophilic digestion of sewage sludge and organic waste. J Environ Sci Health 1997; 31: 2211-31.

Google Scholar

[7] P. Zhang, G. Zhang, W. Wang, Ultrasonic treatment of biological sludge: floc disintegration, cell lysis and inactivation. Bioresour. Technol. 2007, 98: 207–210.

DOI: 10.1016/j.biortech.2005.12.002

Google Scholar

[8] J.L. Pavoni, M.W. Tenney, W.F. Echelberger Jr., Bacterial extracellular polymers and biological flocculation. J. Water Pollut. Control Fed. 1972, 44 (3) : 414–431.

Google Scholar

[9] R.H. Harris, R. Mitchell, The role of polymers in microbial aggregation. in: Starr, M.P., Ingraham, J., Raffel, S. (Eds. ), Annual Review of Microbiology, vol. 27. Annual review Inc., Palo Alto, USA, 1973, p.27–50.

DOI: 10.1111/j.1550-7408.1980.tb04234.x

Google Scholar

[10] N.J. Horan, C.R. Eccles, Purification and characterization of extracellular polysaccharide from activated sludges. Water Res. 1986, 20 (11) : 1427–1432.

DOI: 10.1016/0043-1354(86)90142-9

Google Scholar

[11] V. Urbain, J.C. Block, J. Manem, Bioflocculation in activated sludge: an analytic approach. Water Res. 1993, 27 (5) : 829–838.

DOI: 10.1016/0043-1354(93)90147-a

Google Scholar

[12] J.P. Rideau, J.N. Morfaux, Etude des polisides du mucilage desboues actives. Polisides study on activated sludge mucilage. Water Res. 1976, 10: 999–1003.

DOI: 10.1016/0043-1354(76)90080-4

Google Scholar

[13] B, Frolund, R. Palmgren, K. Keiding, P. Nielsen, Extraction of extracellular polymers from activated sludge using cation exchange resin. Water Res. 1995, 30 (8) : 1749–1758.

DOI: 10.1016/0043-1354(95)00323-1

Google Scholar

[14] A. Jahn, P.H. Nielsen, Cell biomass and exopolymer composition in sewer biofilms. Water Sci. Technol. 1997, 37: 17–24.

DOI: 10.2166/wst.1998.0006

Google Scholar

[15] M.F. Dignac,V. Urbain, D. Rybacki, A. Bruchet, D. Snidaro, P. Scribe, Chemical description of extracellular polymers: implication on activated sludge floc structure. Water Sci. Technol. 1998, 38: 45–53.

DOI: 10.2166/wst.1998.0789

Google Scholar

[16] B.M. Wile´n, B. Jin, P. Lant, The influence of key chemical constituents in activated sludge on surface and flocculating properties. Water Res. 2003, 37: 2127–2139.

DOI: 10.1016/s0043-1354(02)00629-2

Google Scholar

[17] M.J. Brown, J.N. Lester, Comparison of bacterial extra-cellular polymer extraction methods. Appl. Environ. Microbiol. 1980, 40 (2) : 179–185.

DOI: 10.1128/aem.40.2.179-185.1980

Google Scholar

[18] R. Gehr, J.G. Henry, Removal of extracellular material: techniques and pitfalls. Water Res. 1983, 17 (12) : 1743–1748.

DOI: 10.1016/0043-1354(83)90195-1

Google Scholar

[19] T. Rudd, R.M. Sterrit, J.W. Lester, Extraction of extracellular polymers from activated sludge. Biotechnol. Lett. 1983, 5 (5): 327–332.

DOI: 10.1007/bf01141133

Google Scholar

[20] F.D. Sanin, P.A. Vesilind, Effects of centrifugation on the removal of extracellular polymers and physical properties of activated sludge. Water Sci. Technol. 1994, 30 (8): 117–127.

DOI: 10.2166/wst.1994.0394

Google Scholar

[21] M.F. Dignac, V. Urbain, D. Rybacki, A. Bruchet, D. Snidaro, P. Scribe, Chemical description of extracellular poly mers: implication on activated sludge floc structure. Water Sci. Technol. 1998, 38 (8–9): 45–53.

DOI: 10.2166/wst.1998.0789

Google Scholar

[22] T. Rudd, R.M. Sterrit, J.W. Lester, Extraction of extracellular polymers from activated sludge. Biotechnol. Lett. 1983, 5 (5): 327–332.

DOI: 10.1007/bf01141133

Google Scholar

[23] L. Eriksson, B. Alm, Study of bioflocculation mechanism by observing effects of complexing agent on activated sludge properties. Water Sci. Technol. 1991, 24 (7): 21–28.

DOI: 10.2166/wst.1991.0180

Google Scholar

[24] J.H. Bruus, P.H. Nielsen, K. Keiding, On the stability of activated sludge flocs with implications to dewatering. Water Res. 1992, 26 (12) : 1597–1604.

DOI: 10.1016/0043-1354(92)90159-2

Google Scholar

[25] F.D. Sanin, P.A. Vesilind, Bioflocculation of activated sludge: the role of calcium ions and extracellular polymers. Environ. Technol. 2000, 21: 1405–1412.

DOI: 10.1080/09593332208618170

Google Scholar

[26] B. Durmaz F.D. Sanin, Effect of carbon to nitrogen ratio on the composition of microbial extracellular polymers in activated sludge. Water Sci. Technol. 2001, 44 (10) : 221–229.

DOI: 10.2166/wst.2001.0626

Google Scholar

[27] B.Q. Liao, D.G. Allen, I.G. Droppo, G.G. Leppard, S.N. Liss, Surface properties of sludge and their role in bioflocculation and settleability. Water Res. 2001, 35 (2) : 339–350.

DOI: 10.1016/s0043-1354(00)00277-3

Google Scholar

[28] A. Jahn, P.H. Nielsen, Extraction of extracellular polymeric substances (EPS) from biofilms using cation exchange resin. Water Sci. Technol. 1995, 32: 157–164.

DOI: 10.2166/wst.1995.0287

Google Scholar

[29] R., Bura, M. Cheung, B. Liao, J. Finlayson, B.C. Lee, I.G. Droppo, G.G. Leppard, S.N. Liss, Composition of extracellular poly meric substances in the activated sludge matrix. Water Sci. Technol. 1998, 37: 325–333.

DOI: 10.2166/wst.1998.0657

Google Scholar

[30] H. Liu, H.P. Fang, Extraction of extracellular polymeric sub-stances (EPS) of sludges. J. Biotechnol. 2002. 95: 249–256.

DOI: 10.1016/s0168-1656(02)00025-1

Google Scholar

[31] S. Comte, G. Guibaud, M. Baudu, Relations between extraction protocols for activated sludge extracellular polymeric substances (EPS) and EPS complexion properties. Part I. Comparison of the efficiency of eight EPS extraction methods. Enzyme Microb. Technol. 2006, 38: 237–245.

DOI: 10.1016/j.enzmictec.2005.06.016

Google Scholar

[32] M. Denecke, Protein extraction from activated sludge. Water Sci. Technol. 2006, 54: 175–181.

Google Scholar

[33] P. D'Abzac, F. Bordas, E. van Hullebusch, P.N.L. Lens, G. Guibaud, Appl. Microbiol. Biotechnol. 2010, 85: 1589–1599.

Google Scholar

[34] J. Wingender, T.R. Neu, H.C. Flemming, Microbial Extracellular Polymeric Sub-stances: Characterization, Structures and Function, Springer-Verlag, Berlin, Heidelberg, (1999).

Google Scholar

[35] C. Park, J.T. Novak, Characterization of activated sludge exocellular polymers using several cation-associated extraction methods. Water Res. 2007, 41: 1679–1688.

DOI: 10.1016/j.watres.2007.01.031

Google Scholar

[36] K. Raunjker, T. Hvittved-Jacobsen, P.H. Nielsen, Measurement of pools of protein, carbohydrate and lipid in domestic wastewater. Water Res. 1994, 28 (2): 251–262.

DOI: 10.1016/0043-1354(94)90261-5

Google Scholar

[37] S. Comte, G. Guibaud, M. Baudu, Effect of extraction method on EPS from activated sludge: an HPSEC investigation. J. Hazard. Mater. 2007, 140 (1–2): 129–137.

DOI: 10.1016/j.jhazmat.2006.06.058

Google Scholar

[38] Y.G. Chen, S. Jiang, H.Y. Yuan, Q. Zhou, G.W. Gu, Hydrolysis and acidification of waste activated sludge at different pHs, Water Res. 2007, 41: 683–689.

DOI: 10.1016/j.watres.2006.07.030

Google Scholar

[39] J. Jung, X.H. Xing, K. Matsumoto, Kinetic analysis of disruption of excess activated sludge by Dyno Mill and characteristics of protein release for recovery of useful materials. Biochem. Eng. J. 2001, 8: 1–7.

DOI: 10.1016/s1369-703x(00)00123-6

Google Scholar

[40] A. Tiehm, K. Nickel, M. Zellhorn, U. Neis, Ultrasonic waste activated sludge disintegration for improving anaerobic stabilization. Water Res. 2001, 35: 2003–(2009).

DOI: 10.1016/s0043-1354(00)00468-1

Google Scholar

[41] R. Navia, M. Soto, G. Vidal, C. Bornhardt, M.C. Diez, Alkaline pretreatment of kraft mill sludge to improve its anaerobic digestion. Bull. Environ. Contam. Toxicol. 2002, 69: 869–876.

DOI: 10.1007/s00128-002-0140-4

Google Scholar

[42] T.I. Onyeche, O. Schlafer, H. Bormann, C. Schroder, M. Sievers, Ultrasonic cell disruption of stabilized sludge with subsequent anaerobic digestion. Ultrasonic. 2002, 40: 31–35.

DOI: 10.1016/s0041-624x(02)00087-2

Google Scholar

[43] J. Hua, Y. Chen, M. Huo, Y. LI, Experiment study on preparation of protein hydrolysate from residual activated sludge by orthogonal method. Environmental Science and Technology (China). 2006, 29(12) : 28-31.

Google Scholar

[44] R. Su, W. Zhang, E. Wang, M. Zhu, P. Shi, D. Li. Optimized process for efficiently extraction protein from excess activated sludge by Alcalase hydrolysis. Communications in Computer and Information Science, v 215 CCIS, n PART 2, 2011, p: 89-95.

DOI: 10.1007/978-3-642-23324-1_16

Google Scholar

[45] S. Beszedits, A. Lugowski, Utilizing Waste Activated Sludge for Animal Feeding. B&L Information Service, Toronto. (1981).

Google Scholar

[46] E.E. Ray, R.T. O'Brien, D.M. Stiffler, G.S. Smith, Quality of meat from cattle fed sewage solids. J. Food Protect. 1982, 45: 317–321.

DOI: 10.4315/0362-028x-45.4.317

Google Scholar

[47] W.T. Shier, S.K. Purwono, Extraction of single-cell protein from activated sewage sludge: thermal solubilization of protein. Bioresour. Technol. 1994, 49: 157–162.

DOI: 10.1016/0960-8524(94)90079-5

Google Scholar

[48] J. Hwang, L. Zhang, S. Seo, Y.W. Lee, D. Jahng, Protein recovery from excess sludge for its use as animal feed. Bioresource Technology. 2008, 99: 8949–8954.

DOI: 10.1016/j.biortech.2008.05.001

Google Scholar

[49] Y. Liu, S. Kong, Y. Li, H. Zeng. Novel technology for sewage sludge utilization: Preparation of amino acids chelated trace elements (AACTE) fertilizer. Journal of Hazardous Materials. 2009, 171 : 1159–1167.

DOI: 10.1016/j.jhazmat.2009.06.123

Google Scholar

[50] C. Wang, H. Liang, Y. Li, J. Hua, Study on Preparation of foam extinguishing agent using excess sludge. China Water & Wastewater. 2006, 22(9): 38-42.

Google Scholar

[51] Y. Xiang, W. Zhang, H. Zheng, Decolorization Kinetics of Sludge Protein Solution by 60Co γ -Ray Irradiation/H2O2 Oxidation. Trans. Tianjin Univ. 2011, 17: 045-050.

DOI: 10.1007/s12209-011-1512-9

Google Scholar

[52] P. Champagne, The feasibility of producing bio-ethanol from agricultural waste residues: a Canadian perspective. Resour. Conserv. Recyc. 2007, 50: 211–230.

DOI: 10.1016/j.resconrec.2006.09.003

Google Scholar

[53] Industry Canada, BioProducts Canada, Innovation Roadmap on Bio-based Feedstocks, Fuels and Industrial Products. 2004, ISBN: 0-662-36411-2.

Google Scholar

[54] M.J. Taherzadeh, K. Karim,. Acid-based hydrolysis processes for ethanol from lignocellulosic materials: a review. Bioresour Technol. 2007; 2: 472–99.

Google Scholar

[55] M.L. Parry, O.F. Canziani, J.P. Palutikof, P.J. Linden, C.E. Hanson. IPCC – Intergovernmental panel on climate change; <http: /www. ipcc. ch. (2006).

Google Scholar

[56] P. Champagne, C. Li, Enzymatic hydrolysis of cellulosic municipal wastewater treatment process residuals as feedstocks for the recovery of simple sugars. Bioresour Technol, 2009, 100: 5700–5706.

DOI: 10.1016/j.biortech.2009.06.051

Google Scholar

[57] S. Li, X. Zhang, J.M. Andresen, Production of fermentable sugars from enzymatic hydrolysis of pretreated municipal solid waste after autoclave process. Fuel. 2012, 92: 84-88.

DOI: 10.1016/j.fuel.2011.07.012

Google Scholar

[58] B. Frolund, T. Griebe, P.H. Nielsen, Enzymatic activity in the activated-sludge floc matrix, Appl. Microbiol. Biotechnol. 1995, 43: 755–761.

DOI: 10.1007/bf00164784

Google Scholar

[59] B. Frolund, R. Palmgren, K. Keiding, P.H. Nielsen, Extraction of extracellular polymers from activated sludge using a cation exchange resin, Water Res. 1996, 30: 1749–1758.

DOI: 10.1016/0043-1354(95)00323-1

Google Scholar

[60] J. Jung, X.H. Xing, K. Matsumoto, Kinetic analysis of disruption of excess activated sludge by Dyno Mill and characteristics of protein release for recovery of useful materials, Biochem. Eng. J. 2001, 8 : 1–7.

DOI: 10.1016/s1369-703x(00)00123-6

Google Scholar

[61] A. Cadoret, A. Conrad, J.C. Block, Availability of low and high molecular weight substrates to extracellular enzymes in whole and dispersed activated sludges, Enzyme Microb. Technol. 2002, 31: 179–186.

DOI: 10.1016/s0141-0229(02)00097-2

Google Scholar

[62] J. Jung, X.H. Xing, K. Matsumoto, Recoverability of protease released from disrupted excess sludge and its potential application to enhanced hydrolysis of proteins in wastewater, Biochem. Eng. J. 2002, 10: 67–72.

DOI: 10.1016/s1369-703x(01)00163-2

Google Scholar

[63] A. Gessesse, T. Dueholm, S.B. Petersen, P.H. Nielsen, Lipase and protease extraction from activated sludge, Water Res. 2003, 37 : 3652–3657.

DOI: 10.1016/s0043-1354(03)00241-0

Google Scholar

[64] G. Yu, P. He, L. Shao, D. Lee, Enzyme activities in activated sludge flocs, Appl. Microbiol. Biotechnol. 2007, 77 : 605–612.

DOI: 10.1007/s00253-007-1204-5

Google Scholar

[65] T. Mason, Sonochemistry and the environment – Providing a 'green', link between chemistry, physics and engineering, Ultrason. Sonochem. 2007, 14: 476–483.

DOI: 10.1016/j.ultsonch.2006.10.008

Google Scholar

[66] K. Nickel, U. Neis, Ultrasonic disintegration of biosolids for improved biodegradation, Ultrason. Sonochem. 2007, 14: 450–455.

DOI: 10.1016/j.ultsonch.2006.10.012

Google Scholar

[67] G. Yu, P. He, L. Shao, D. Lee, Extracellular enzymes in sludge flocs collected at 14 full-scale wastewater treatment plants, J. Chem. Technol. Biotechnol. 2008, 83: 1717–1725.

DOI: 10.1002/jctb.1993

Google Scholar

[68] G. Yu, P. He, L. Shao, Y. Zhu, Enzyme extraction by ultrasound from sludge flocs, J. Environ. Sci. 2009, 21: 204–210.

DOI: 10.1016/s1001-0742(08)62252-4

Google Scholar

[69] D. Nabarlatz, J. Vondrysova, P. Jenicek, F. Stüber, J. Font, A. Fortuny, et al. Extraction of enzymes from activated sludge. In: Zamorano M, et al., (eds. ). Waste management and the environment. IV. WIT transactions on ecology and the environment. Southampton: WIT Press; 2008a. p.249.

DOI: 10.2495/wm080271

Google Scholar

[70] D. Nabarlatz, J. Vondrysova, P. Jenicek, F. Stüber, J. Font, A. Fortuny, et al. Extraction of protease and lipase from activated sludge by ultrasound and magnetic stirring disintegration. In: Proceedings of the 18th international congress of chemical and process engineering. Prague, Czech Republic: Process Engineering Publisher; 2008b. p.374.

DOI: 10.1016/j.ultsonch.2010.02.006

Google Scholar

[71] D. Nabarlatz, J. Vondrysova, P. Jenicek, F. Stüber, J. Font, A. Fortuny, et al. Hydrolytic enzymes in activated sludge: extraction of protease and lipase by stirring and ultrasonication. Ultrason Sonochem 2010; 17: 923–931.

DOI: 10.1016/j.ultsonch.2010.02.006

Google Scholar

[72] J. Tong, Y. Chen, Recovery of nitrogen and phosphorus from alkaline fermentation liquid of waste activated sludge and application of the fermentation liquid to promote biological municipal wastewater treatment. Water Res. 2009, 43: 2969–2976.

DOI: 10.1016/j.watres.2009.04.015

Google Scholar

[73] K. Luo, Q. Yang, J. Yu, X.M. Li, G.J. Yang, B.X. Xie, W. Zheng, W. Zheng, G.M. Zeng, Combined effect of sodium dodecyl sulfate and enzyme on waste activated sludge hydrolysis and acidification. Bioresour. Technol. 2011, 102: 7103–7110.

DOI: 10.1016/j.biortech.2011.04.023

Google Scholar

[74] R. Rajagopal, F. Beline, Anaerobic hydrolysis and acidification of organic substrates: determination of anaerobic hydrolytic potential. Bioresour. Technol. 2011, 102: 5653–5658.

DOI: 10.1016/j.biortech.2011.02.068

Google Scholar

[75] O.G. Apul, F.D. Sanin, Ultrasonic Pretreatment and Subsequent Anaerobic Digestion Under Different Operational Conditions. 2010, 101: 8984–8992.

DOI: 10.1016/j.biortech.2010.06.128

Google Scholar

[76] L. Appels, A.V. Assche, K. Willems, J. Degreve, J.V. Impe, R. Dewil, Peracetic acid oxidation as an alternative pretreatment for the anaerobic digestion of waste activated sludge. Bioresour. Technol. 2011, 102: 4124–4130.

DOI: 10.1016/j.biortech.2010.12.070

Google Scholar

[77] D.C. Devlin, S.R.R. Esteves, R.M. Dinsdale, A.J. Guwy, The effect of acid pretreatment on the anaerobic digestion and dewatering of waste activated sludge. Bioresour. Technol. 2011, 102: 4076–4082.

DOI: 10.1016/j.biortech.2010.12.043

Google Scholar

[78] Y.Y. Yan, L.Y. Feng, C.J. Zhang, C. Wisniewski, Q. Zhuo, Ultrasonic enhancement of waste activated sludge hydrolysis and volatile fatty acids accumulation at pH 10. 0. Water Res. 2010, 44: 3329–333.

DOI: 10.1016/j.watres.2010.03.015

Google Scholar

[79] F. Wang, Y. Wang, M. Ji, Mechanisms and kinetics models for ultrasonic waste activated sludge disintegration. J. Hazard. Mater. 2005, 123: 145–150.

DOI: 10.1016/j.jhazmat.2005.03.033

Google Scholar

[80] H.Y. Yuan, Y.G. Chen, H.X. Zhang, S. Jiang, Q. Zhou, G.W. Gu, Improved bio-production of short-chain fatty acids (SCFAs) from excess sludge under alkaline conditions. Environ. Sci. Technol. 2006, 40: 2025–(2029).

DOI: 10.1021/es052252b

Google Scholar

[81] Y.G. Chen, S. Jiang, H.Y. Yuan, Q. Zhou, G.W. Gu, Hydrolysis and acidification of waste activated sludge at different pHs. Water Res. 2007, 41, 683–689.

DOI: 10.1016/j.watres.2006.07.030

Google Scholar

[82] H. Carrère, C. Dumas, A. Battimelli, D.J. Batstone, J.P. Delgenès, J.P. Steyer, I. Ferrer, Pretreatment methods to improve sludge anaerobic degradability: a review. J. Hazard. Mater. 2010, 183: 1–15.

DOI: 10.1016/j.jhazmat.2010.06.129

Google Scholar