[1]
Y.J. Wei, Y.S. Liu, Effects of sewage sludge compost application on crops and cropland in a 3-year field study, Chemosphere. 2005, 59: 1257–1265.
DOI: 10.1016/j.chemosphere.2004.11.052
Google Scholar
[2]
P.L. McCarty. Sludge concentration-needs, accomplishments and future goals. J Water Pollut Control Fed 1966; 38: 493.
Google Scholar
[3]
P. Chudoba, B. Capdeville. A possible way towards reduction of waste sludge production. Sixth IAWPRC Conference on Design and Operation of Large Wastewater Treatment Plants . Prague, (1991).
Google Scholar
[4]
A. Bagreev, S. Bashkova, D.C. Locke, T.J. Bandosz, Sewage sludge-derived materials as efficient adsorbents for removal of hydrogen sulfide, Environ. Sci. Technol. 2001, 35: 1537–1543.
DOI: 10.1021/es001678h
Google Scholar
[5]
N.J. Horan. Biological Wastewater Treatment Systems. Chichester, UK: Wiley, (1990).
Google Scholar
[6]
Q.L. Zhao, G. Kugel. Thermophilic/mesophilic digestion of sewage sludge and organic waste. J Environ Sci Health 1997; 31: 2211-31.
Google Scholar
[7]
P. Zhang, G. Zhang, W. Wang, Ultrasonic treatment of biological sludge: floc disintegration, cell lysis and inactivation. Bioresour. Technol. 2007, 98: 207–210.
DOI: 10.1016/j.biortech.2005.12.002
Google Scholar
[8]
J.L. Pavoni, M.W. Tenney, W.F. Echelberger Jr., Bacterial extracellular polymers and biological flocculation. J. Water Pollut. Control Fed. 1972, 44 (3) : 414–431.
Google Scholar
[9]
R.H. Harris, R. Mitchell, The role of polymers in microbial aggregation. in: Starr, M.P., Ingraham, J., Raffel, S. (Eds. ), Annual Review of Microbiology, vol. 27. Annual review Inc., Palo Alto, USA, 1973, p.27–50.
DOI: 10.1111/j.1550-7408.1980.tb04234.x
Google Scholar
[10]
N.J. Horan, C.R. Eccles, Purification and characterization of extracellular polysaccharide from activated sludges. Water Res. 1986, 20 (11) : 1427–1432.
DOI: 10.1016/0043-1354(86)90142-9
Google Scholar
[11]
V. Urbain, J.C. Block, J. Manem, Bioflocculation in activated sludge: an analytic approach. Water Res. 1993, 27 (5) : 829–838.
DOI: 10.1016/0043-1354(93)90147-a
Google Scholar
[12]
J.P. Rideau, J.N. Morfaux, Etude des polisides du mucilage desboues actives. Polisides study on activated sludge mucilage. Water Res. 1976, 10: 999–1003.
DOI: 10.1016/0043-1354(76)90080-4
Google Scholar
[13]
B, Frolund, R. Palmgren, K. Keiding, P. Nielsen, Extraction of extracellular polymers from activated sludge using cation exchange resin. Water Res. 1995, 30 (8) : 1749–1758.
DOI: 10.1016/0043-1354(95)00323-1
Google Scholar
[14]
A. Jahn, P.H. Nielsen, Cell biomass and exopolymer composition in sewer biofilms. Water Sci. Technol. 1997, 37: 17–24.
DOI: 10.2166/wst.1998.0006
Google Scholar
[15]
M.F. Dignac,V. Urbain, D. Rybacki, A. Bruchet, D. Snidaro, P. Scribe, Chemical description of extracellular polymers: implication on activated sludge floc structure. Water Sci. Technol. 1998, 38: 45–53.
DOI: 10.2166/wst.1998.0789
Google Scholar
[16]
B.M. Wile´n, B. Jin, P. Lant, The influence of key chemical constituents in activated sludge on surface and flocculating properties. Water Res. 2003, 37: 2127–2139.
DOI: 10.1016/s0043-1354(02)00629-2
Google Scholar
[17]
M.J. Brown, J.N. Lester, Comparison of bacterial extra-cellular polymer extraction methods. Appl. Environ. Microbiol. 1980, 40 (2) : 179–185.
DOI: 10.1128/aem.40.2.179-185.1980
Google Scholar
[18]
R. Gehr, J.G. Henry, Removal of extracellular material: techniques and pitfalls. Water Res. 1983, 17 (12) : 1743–1748.
DOI: 10.1016/0043-1354(83)90195-1
Google Scholar
[19]
T. Rudd, R.M. Sterrit, J.W. Lester, Extraction of extracellular polymers from activated sludge. Biotechnol. Lett. 1983, 5 (5): 327–332.
DOI: 10.1007/bf01141133
Google Scholar
[20]
F.D. Sanin, P.A. Vesilind, Effects of centrifugation on the removal of extracellular polymers and physical properties of activated sludge. Water Sci. Technol. 1994, 30 (8): 117–127.
DOI: 10.2166/wst.1994.0394
Google Scholar
[21]
M.F. Dignac, V. Urbain, D. Rybacki, A. Bruchet, D. Snidaro, P. Scribe, Chemical description of extracellular poly mers: implication on activated sludge floc structure. Water Sci. Technol. 1998, 38 (8–9): 45–53.
DOI: 10.2166/wst.1998.0789
Google Scholar
[22]
T. Rudd, R.M. Sterrit, J.W. Lester, Extraction of extracellular polymers from activated sludge. Biotechnol. Lett. 1983, 5 (5): 327–332.
DOI: 10.1007/bf01141133
Google Scholar
[23]
L. Eriksson, B. Alm, Study of bioflocculation mechanism by observing effects of complexing agent on activated sludge properties. Water Sci. Technol. 1991, 24 (7): 21–28.
DOI: 10.2166/wst.1991.0180
Google Scholar
[24]
J.H. Bruus, P.H. Nielsen, K. Keiding, On the stability of activated sludge flocs with implications to dewatering. Water Res. 1992, 26 (12) : 1597–1604.
DOI: 10.1016/0043-1354(92)90159-2
Google Scholar
[25]
F.D. Sanin, P.A. Vesilind, Bioflocculation of activated sludge: the role of calcium ions and extracellular polymers. Environ. Technol. 2000, 21: 1405–1412.
DOI: 10.1080/09593332208618170
Google Scholar
[26]
B. Durmaz F.D. Sanin, Effect of carbon to nitrogen ratio on the composition of microbial extracellular polymers in activated sludge. Water Sci. Technol. 2001, 44 (10) : 221–229.
DOI: 10.2166/wst.2001.0626
Google Scholar
[27]
B.Q. Liao, D.G. Allen, I.G. Droppo, G.G. Leppard, S.N. Liss, Surface properties of sludge and their role in bioflocculation and settleability. Water Res. 2001, 35 (2) : 339–350.
DOI: 10.1016/s0043-1354(00)00277-3
Google Scholar
[28]
A. Jahn, P.H. Nielsen, Extraction of extracellular polymeric substances (EPS) from biofilms using cation exchange resin. Water Sci. Technol. 1995, 32: 157–164.
DOI: 10.2166/wst.1995.0287
Google Scholar
[29]
R., Bura, M. Cheung, B. Liao, J. Finlayson, B.C. Lee, I.G. Droppo, G.G. Leppard, S.N. Liss, Composition of extracellular poly meric substances in the activated sludge matrix. Water Sci. Technol. 1998, 37: 325–333.
DOI: 10.2166/wst.1998.0657
Google Scholar
[30]
H. Liu, H.P. Fang, Extraction of extracellular polymeric sub-stances (EPS) of sludges. J. Biotechnol. 2002. 95: 249–256.
DOI: 10.1016/s0168-1656(02)00025-1
Google Scholar
[31]
S. Comte, G. Guibaud, M. Baudu, Relations between extraction protocols for activated sludge extracellular polymeric substances (EPS) and EPS complexion properties. Part I. Comparison of the efficiency of eight EPS extraction methods. Enzyme Microb. Technol. 2006, 38: 237–245.
DOI: 10.1016/j.enzmictec.2005.06.016
Google Scholar
[32]
M. Denecke, Protein extraction from activated sludge. Water Sci. Technol. 2006, 54: 175–181.
Google Scholar
[33]
P. D'Abzac, F. Bordas, E. van Hullebusch, P.N.L. Lens, G. Guibaud, Appl. Microbiol. Biotechnol. 2010, 85: 1589–1599.
Google Scholar
[34]
J. Wingender, T.R. Neu, H.C. Flemming, Microbial Extracellular Polymeric Sub-stances: Characterization, Structures and Function, Springer-Verlag, Berlin, Heidelberg, (1999).
Google Scholar
[35]
C. Park, J.T. Novak, Characterization of activated sludge exocellular polymers using several cation-associated extraction methods. Water Res. 2007, 41: 1679–1688.
DOI: 10.1016/j.watres.2007.01.031
Google Scholar
[36]
K. Raunjker, T. Hvittved-Jacobsen, P.H. Nielsen, Measurement of pools of protein, carbohydrate and lipid in domestic wastewater. Water Res. 1994, 28 (2): 251–262.
DOI: 10.1016/0043-1354(94)90261-5
Google Scholar
[37]
S. Comte, G. Guibaud, M. Baudu, Effect of extraction method on EPS from activated sludge: an HPSEC investigation. J. Hazard. Mater. 2007, 140 (1–2): 129–137.
DOI: 10.1016/j.jhazmat.2006.06.058
Google Scholar
[38]
Y.G. Chen, S. Jiang, H.Y. Yuan, Q. Zhou, G.W. Gu, Hydrolysis and acidification of waste activated sludge at different pHs, Water Res. 2007, 41: 683–689.
DOI: 10.1016/j.watres.2006.07.030
Google Scholar
[39]
J. Jung, X.H. Xing, K. Matsumoto, Kinetic analysis of disruption of excess activated sludge by Dyno Mill and characteristics of protein release for recovery of useful materials. Biochem. Eng. J. 2001, 8: 1–7.
DOI: 10.1016/s1369-703x(00)00123-6
Google Scholar
[40]
A. Tiehm, K. Nickel, M. Zellhorn, U. Neis, Ultrasonic waste activated sludge disintegration for improving anaerobic stabilization. Water Res. 2001, 35: 2003–(2009).
DOI: 10.1016/s0043-1354(00)00468-1
Google Scholar
[41]
R. Navia, M. Soto, G. Vidal, C. Bornhardt, M.C. Diez, Alkaline pretreatment of kraft mill sludge to improve its anaerobic digestion. Bull. Environ. Contam. Toxicol. 2002, 69: 869–876.
DOI: 10.1007/s00128-002-0140-4
Google Scholar
[42]
T.I. Onyeche, O. Schlafer, H. Bormann, C. Schroder, M. Sievers, Ultrasonic cell disruption of stabilized sludge with subsequent anaerobic digestion. Ultrasonic. 2002, 40: 31–35.
DOI: 10.1016/s0041-624x(02)00087-2
Google Scholar
[43]
J. Hua, Y. Chen, M. Huo, Y. LI, Experiment study on preparation of protein hydrolysate from residual activated sludge by orthogonal method. Environmental Science and Technology (China). 2006, 29(12) : 28-31.
Google Scholar
[44]
R. Su, W. Zhang, E. Wang, M. Zhu, P. Shi, D. Li. Optimized process for efficiently extraction protein from excess activated sludge by Alcalase hydrolysis. Communications in Computer and Information Science, v 215 CCIS, n PART 2, 2011, p: 89-95.
DOI: 10.1007/978-3-642-23324-1_16
Google Scholar
[45]
S. Beszedits, A. Lugowski, Utilizing Waste Activated Sludge for Animal Feeding. B&L Information Service, Toronto. (1981).
Google Scholar
[46]
E.E. Ray, R.T. O'Brien, D.M. Stiffler, G.S. Smith, Quality of meat from cattle fed sewage solids. J. Food Protect. 1982, 45: 317–321.
DOI: 10.4315/0362-028x-45.4.317
Google Scholar
[47]
W.T. Shier, S.K. Purwono, Extraction of single-cell protein from activated sewage sludge: thermal solubilization of protein. Bioresour. Technol. 1994, 49: 157–162.
DOI: 10.1016/0960-8524(94)90079-5
Google Scholar
[48]
J. Hwang, L. Zhang, S. Seo, Y.W. Lee, D. Jahng, Protein recovery from excess sludge for its use as animal feed. Bioresource Technology. 2008, 99: 8949–8954.
DOI: 10.1016/j.biortech.2008.05.001
Google Scholar
[49]
Y. Liu, S. Kong, Y. Li, H. Zeng. Novel technology for sewage sludge utilization: Preparation of amino acids chelated trace elements (AACTE) fertilizer. Journal of Hazardous Materials. 2009, 171 : 1159–1167.
DOI: 10.1016/j.jhazmat.2009.06.123
Google Scholar
[50]
C. Wang, H. Liang, Y. Li, J. Hua, Study on Preparation of foam extinguishing agent using excess sludge. China Water & Wastewater. 2006, 22(9): 38-42.
Google Scholar
[51]
Y. Xiang, W. Zhang, H. Zheng, Decolorization Kinetics of Sludge Protein Solution by 60Co γ -Ray Irradiation/H2O2 Oxidation. Trans. Tianjin Univ. 2011, 17: 045-050.
DOI: 10.1007/s12209-011-1512-9
Google Scholar
[52]
P. Champagne, The feasibility of producing bio-ethanol from agricultural waste residues: a Canadian perspective. Resour. Conserv. Recyc. 2007, 50: 211–230.
DOI: 10.1016/j.resconrec.2006.09.003
Google Scholar
[53]
Industry Canada, BioProducts Canada, Innovation Roadmap on Bio-based Feedstocks, Fuels and Industrial Products. 2004, ISBN: 0-662-36411-2.
Google Scholar
[54]
M.J. Taherzadeh, K. Karim,. Acid-based hydrolysis processes for ethanol from lignocellulosic materials: a review. Bioresour Technol. 2007; 2: 472–99.
Google Scholar
[55]
M.L. Parry, O.F. Canziani, J.P. Palutikof, P.J. Linden, C.E. Hanson. IPCC – Intergovernmental panel on climate change; <http: /www. ipcc. ch. (2006).
Google Scholar
[56]
P. Champagne, C. Li, Enzymatic hydrolysis of cellulosic municipal wastewater treatment process residuals as feedstocks for the recovery of simple sugars. Bioresour Technol, 2009, 100: 5700–5706.
DOI: 10.1016/j.biortech.2009.06.051
Google Scholar
[57]
S. Li, X. Zhang, J.M. Andresen, Production of fermentable sugars from enzymatic hydrolysis of pretreated municipal solid waste after autoclave process. Fuel. 2012, 92: 84-88.
DOI: 10.1016/j.fuel.2011.07.012
Google Scholar
[58]
B. Frolund, T. Griebe, P.H. Nielsen, Enzymatic activity in the activated-sludge floc matrix, Appl. Microbiol. Biotechnol. 1995, 43: 755–761.
DOI: 10.1007/bf00164784
Google Scholar
[59]
B. Frolund, R. Palmgren, K. Keiding, P.H. Nielsen, Extraction of extracellular polymers from activated sludge using a cation exchange resin, Water Res. 1996, 30: 1749–1758.
DOI: 10.1016/0043-1354(95)00323-1
Google Scholar
[60]
J. Jung, X.H. Xing, K. Matsumoto, Kinetic analysis of disruption of excess activated sludge by Dyno Mill and characteristics of protein release for recovery of useful materials, Biochem. Eng. J. 2001, 8 : 1–7.
DOI: 10.1016/s1369-703x(00)00123-6
Google Scholar
[61]
A. Cadoret, A. Conrad, J.C. Block, Availability of low and high molecular weight substrates to extracellular enzymes in whole and dispersed activated sludges, Enzyme Microb. Technol. 2002, 31: 179–186.
DOI: 10.1016/s0141-0229(02)00097-2
Google Scholar
[62]
J. Jung, X.H. Xing, K. Matsumoto, Recoverability of protease released from disrupted excess sludge and its potential application to enhanced hydrolysis of proteins in wastewater, Biochem. Eng. J. 2002, 10: 67–72.
DOI: 10.1016/s1369-703x(01)00163-2
Google Scholar
[63]
A. Gessesse, T. Dueholm, S.B. Petersen, P.H. Nielsen, Lipase and protease extraction from activated sludge, Water Res. 2003, 37 : 3652–3657.
DOI: 10.1016/s0043-1354(03)00241-0
Google Scholar
[64]
G. Yu, P. He, L. Shao, D. Lee, Enzyme activities in activated sludge flocs, Appl. Microbiol. Biotechnol. 2007, 77 : 605–612.
DOI: 10.1007/s00253-007-1204-5
Google Scholar
[65]
T. Mason, Sonochemistry and the environment – Providing a 'green', link between chemistry, physics and engineering, Ultrason. Sonochem. 2007, 14: 476–483.
DOI: 10.1016/j.ultsonch.2006.10.008
Google Scholar
[66]
K. Nickel, U. Neis, Ultrasonic disintegration of biosolids for improved biodegradation, Ultrason. Sonochem. 2007, 14: 450–455.
DOI: 10.1016/j.ultsonch.2006.10.012
Google Scholar
[67]
G. Yu, P. He, L. Shao, D. Lee, Extracellular enzymes in sludge flocs collected at 14 full-scale wastewater treatment plants, J. Chem. Technol. Biotechnol. 2008, 83: 1717–1725.
DOI: 10.1002/jctb.1993
Google Scholar
[68]
G. Yu, P. He, L. Shao, Y. Zhu, Enzyme extraction by ultrasound from sludge flocs, J. Environ. Sci. 2009, 21: 204–210.
DOI: 10.1016/s1001-0742(08)62252-4
Google Scholar
[69]
D. Nabarlatz, J. Vondrysova, P. Jenicek, F. Stüber, J. Font, A. Fortuny, et al. Extraction of enzymes from activated sludge. In: Zamorano M, et al., (eds. ). Waste management and the environment. IV. WIT transactions on ecology and the environment. Southampton: WIT Press; 2008a. p.249.
DOI: 10.2495/wm080271
Google Scholar
[70]
D. Nabarlatz, J. Vondrysova, P. Jenicek, F. Stüber, J. Font, A. Fortuny, et al. Extraction of protease and lipase from activated sludge by ultrasound and magnetic stirring disintegration. In: Proceedings of the 18th international congress of chemical and process engineering. Prague, Czech Republic: Process Engineering Publisher; 2008b. p.374.
DOI: 10.1016/j.ultsonch.2010.02.006
Google Scholar
[71]
D. Nabarlatz, J. Vondrysova, P. Jenicek, F. Stüber, J. Font, A. Fortuny, et al. Hydrolytic enzymes in activated sludge: extraction of protease and lipase by stirring and ultrasonication. Ultrason Sonochem 2010; 17: 923–931.
DOI: 10.1016/j.ultsonch.2010.02.006
Google Scholar
[72]
J. Tong, Y. Chen, Recovery of nitrogen and phosphorus from alkaline fermentation liquid of waste activated sludge and application of the fermentation liquid to promote biological municipal wastewater treatment. Water Res. 2009, 43: 2969–2976.
DOI: 10.1016/j.watres.2009.04.015
Google Scholar
[73]
K. Luo, Q. Yang, J. Yu, X.M. Li, G.J. Yang, B.X. Xie, W. Zheng, W. Zheng, G.M. Zeng, Combined effect of sodium dodecyl sulfate and enzyme on waste activated sludge hydrolysis and acidification. Bioresour. Technol. 2011, 102: 7103–7110.
DOI: 10.1016/j.biortech.2011.04.023
Google Scholar
[74]
R. Rajagopal, F. Beline, Anaerobic hydrolysis and acidification of organic substrates: determination of anaerobic hydrolytic potential. Bioresour. Technol. 2011, 102: 5653–5658.
DOI: 10.1016/j.biortech.2011.02.068
Google Scholar
[75]
O.G. Apul, F.D. Sanin, Ultrasonic Pretreatment and Subsequent Anaerobic Digestion Under Different Operational Conditions. 2010, 101: 8984–8992.
DOI: 10.1016/j.biortech.2010.06.128
Google Scholar
[76]
L. Appels, A.V. Assche, K. Willems, J. Degreve, J.V. Impe, R. Dewil, Peracetic acid oxidation as an alternative pretreatment for the anaerobic digestion of waste activated sludge. Bioresour. Technol. 2011, 102: 4124–4130.
DOI: 10.1016/j.biortech.2010.12.070
Google Scholar
[77]
D.C. Devlin, S.R.R. Esteves, R.M. Dinsdale, A.J. Guwy, The effect of acid pretreatment on the anaerobic digestion and dewatering of waste activated sludge. Bioresour. Technol. 2011, 102: 4076–4082.
DOI: 10.1016/j.biortech.2010.12.043
Google Scholar
[78]
Y.Y. Yan, L.Y. Feng, C.J. Zhang, C. Wisniewski, Q. Zhuo, Ultrasonic enhancement of waste activated sludge hydrolysis and volatile fatty acids accumulation at pH 10. 0. Water Res. 2010, 44: 3329–333.
DOI: 10.1016/j.watres.2010.03.015
Google Scholar
[79]
F. Wang, Y. Wang, M. Ji, Mechanisms and kinetics models for ultrasonic waste activated sludge disintegration. J. Hazard. Mater. 2005, 123: 145–150.
DOI: 10.1016/j.jhazmat.2005.03.033
Google Scholar
[80]
H.Y. Yuan, Y.G. Chen, H.X. Zhang, S. Jiang, Q. Zhou, G.W. Gu, Improved bio-production of short-chain fatty acids (SCFAs) from excess sludge under alkaline conditions. Environ. Sci. Technol. 2006, 40: 2025–(2029).
DOI: 10.1021/es052252b
Google Scholar
[81]
Y.G. Chen, S. Jiang, H.Y. Yuan, Q. Zhou, G.W. Gu, Hydrolysis and acidification of waste activated sludge at different pHs. Water Res. 2007, 41, 683–689.
DOI: 10.1016/j.watres.2006.07.030
Google Scholar
[82]
H. Carrère, C. Dumas, A. Battimelli, D.J. Batstone, J.P. Delgenès, J.P. Steyer, I. Ferrer, Pretreatment methods to improve sludge anaerobic degradability: a review. J. Hazard. Mater. 2010, 183: 1–15.
DOI: 10.1016/j.jhazmat.2010.06.129
Google Scholar