Preparation of Mesoporous Alumina Using Hexamethyl Disilylamine as Substitute Solvent

Article Preview

Abstract:

Mesoporous inorganic alumina with framework walls has been synthesized using a new and simple non-supercritical drying method. As a substitute solvent, hexamethyl disilylamine (HMDS) plays a definitive part for synthesis of the mesoporous alumina due to its special characters. The resulting alumina product shows high BET surface area, concentrated distribution of diameter and high porosity. The pore size distribution of alumina we prepared is concentrated around 11nm. Its structure still maintained stable and the BET surface area could reach up to 413.4593m2/g after being calcined at 800°C.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

482-486

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N. Hüsing, U. Schubert: Angew Chem. Int. Ed. Vol. 22-45 (1998), p.37.

Google Scholar

[2] K. Kanamori, M. Aizawa, K. Nakanishi, T. Hanada: Adv. Mater. Vol. 1589–1593 (2007), p.19.

Google Scholar

[3] T.Y. Wei, S.Y. Lu, Y.C. Chang: J. Phys. Chem. C Vol. 7424–7428 (2009), p.113.

Google Scholar

[4] A. Abashian, K. Abe, R. Abe, K. Abe, I. Adachi, B.S. Ahn, et al., The Belle detector, Nucl. Instrum. Methods A Vol. 117–232 (2002), p.479.

Google Scholar

[5] N. Al-Yassir, R.L. Van Mao: Appl. Catal., A Vol. 275–283 (2007), p.317.

Google Scholar

[6] M.J. Burchell, G. Graham, A. Kearsley: Annu. Rev. Earth Planet. Sci. Vol. 385–418 (2006), p.34.

DOI: 10.1146/annurev.earth.34.031405.124939

Google Scholar

[7] Y. Adraider, S.N.B. Hodgson, M.C. Sharp, Z.Y. Zhang, F. Nabhani, A. Al-Waidh, Y.X. Pang: Journal of the European Ceramic Society. Vol. 4229-4240 (2012), p.32.

DOI: 10.1016/j.jeurceramsoc.2012.07.012

Google Scholar

[8] C. J. Brinker and G.W. Scherer, in: Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing, Academic Press, (1990).

Google Scholar

[9] L. Wu, Y.D. Huang, Z.J. Wang, L. Liu, H.F. Xu: Applied Surface Science. Vol. 5973-5977 (2010), p.256.

Google Scholar

[10] B.E. Yoldas: Am. Ceram. Soc. Bull. Vol. 286–288 (1975), p.54.

Google Scholar

[11] S.A. Bagshew, T. J. Pinnavaia: Angew Chem. Int. Ed. Vol. 1102 (1996), p.35.

Google Scholar

[12] Information on http: /en. wikipedia. org/wiki/Aerogel.

Google Scholar

[13] H. Zhang, Y.L. Sun, B.Q. Qu: J. Chin. Electr. Microsc. Soc. Vol. 22, 659 (2003), p.6.

Google Scholar

[14] A.V. Rao, M.M. Kulkarni: Journal of Sol-Gel Science and Technology. Vol. 103-109 (2003), p.27.

Google Scholar

[15] W.C. Li, A.H. Lu, S.C. Guo: J Colloid Interface. Sci. Vol. 153-157 (2002), p.254.

Google Scholar

[16] F. Shi, L. Wang, J. Liu: Mater. lett. Vol. 3718-3722 (2006), p.60.

Google Scholar

[17] V. Stengl, S. Bakardijieva, J. Subrt, L. Szatmary: Microporous Mesoporous Master. Vol. 1-6 (2006), p.91.

Google Scholar