Co-Extrusion Technology for Functioned Nature Fiber Reinforced Polymer Composites

Article Preview

Abstract:

As a new-generation green composite, core-shell structure nature fibers/ polymer composites (NFPC) has been recently developed and used to enhance performance characteristics of composites. The shell layer, made of thermopolymers unfilled or filled with minerals or nature fibers and other additives, plays a critical role in enhancing overall composite properties. The co-extrusion technology for different structural and material combinations are, however, needed to achieve desired processing. In this paper, co-extrusion technology and core-shell structure NFPC have been discussed by systematically studying the effect of structure on properties of NFPC. The result of this paper can help provide a fundamental base for developing new functional applications of core-shell structure NFPCs.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

497-501

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F. Yao, and Q. Wu. Coextruded polyethylene and wood-flour composite: Effect of shell thickness, wood loading, and core quality. J. Applied Polymer Science Vol. 118(2010), pp.3594-3601.

DOI: 10.1002/app.32742

Google Scholar

[2] S.R. Doshi, and J. M. Charrier. A coextrusion process for the manufacture of short-fiber-reinforced thermopolymer pipe. Polymer Engineering and Science Vol. 28(1988), pp.964-973.

DOI: 10.1002/pen.760281505

Google Scholar

[3] Smith, P. M. and M. P. Wolcott. Opportunities for wood/natural fiber polymer composites in residential and industrial applications. Forest Products J. Vol, 56(2006), pp.4-11.

Google Scholar

[4] J. Z. Lu, Q. Wu, and H.S. McNabb, Jr. Chemical coupling in wood fiber and polymer composites: A review of coupling agents and treatments. Wood Fiber Science Vol. 32(2000), pp.88-104.

Google Scholar

[5] Y. Lei and Q. Wu . Wood polymer composites based on recycled high density polyethylene and poly(ethylene terephthalate) microfibillar blends. Bioresource Technology, Vol. 101(2010), pp.3665-3671.

DOI: 10.1016/j.biortech.2009.12.069

Google Scholar

[6] H. Jiang, D.P. Kamdem, B. Bezubic, and P. Ruede. Mechanical properties of poly(vinyl chloride)/ wood flour/glass fiber hybrid composites. J. Vinyl Addit. Techn., Vol. 9(2003), p.138.

DOI: 10.1002/vnl.10075

Google Scholar

[7] R.Z. Huang, W. Xiong, X. Xu, and Q. Wu. Thermal Expansion Behavior of Co-extruded Wood Polymer Composites with Glass-fiber Reinforced Shells. Bioresources: Vol. 7(2012), pp.5514-5526.

DOI: 10.15376/biores.7.4.5514-5526

Google Scholar

[8] S. Jin and L. M. Matuana. Coextruded PVC/wood-flour composites with WPC cap layers. Journal of Vinyl & Additive Technology Vol. 14(2008), pp.197-203.

DOI: 10.1002/vnl.20162

Google Scholar

[9] B. J. Kim, F. Yao, G. Han, Q. Wang, and  Q. Wu. Mechanical and physical properties of core-shell structured wood polymer composites: effect of shells with hybrid mineral and wood fillers, " Composite Part B. Vol. 45(2012), pp.1040-1048.

DOI: 10.1016/j.compositesb.2012.07.031

Google Scholar

[10] Zhu, R. P., and C.T. Sun. 2003. Effects of fiber orientation/elastic constants on cofficients of thermal expansion in laminates. Mechanics Advd Mater. Strut 10: 99-107.

DOI: 10.1080/15376490306733

Google Scholar

[11] Hsueh, C.H. and M. K. Ferber. Apparent coefficient of thermal expansion and residual stresses in multilayer capacitors. Composites Part A. Vol. 33(2002), pp.1115-1121.

DOI: 10.1016/s1359-835x(02)00054-4

Google Scholar

[12] Halpin, J.C. and N.J. Pagano. The Laminate Approximation for Randomly Oriented Fibrous Composites. J. Comp. Mat., Vol. Vol. 3(1969), p.720.

DOI: 10.1177/002199836900300416

Google Scholar

[13] Bressan, F., F De Bona, and A Soma. Design of composite laminates with low thermal expansion. J. Materials: Design and Applications Vol. 218(2004), pp.201-209.

DOI: 10.1177/146442070421800304

Google Scholar

[14] Yu, Z. and A. Zhou. An integrated thermomechanical method for modeling fiber reinforced polymer composite structures in fire. In Proc. ASCE Analysis and Computation Specialty Conference ( 2010). P, 492-503.

DOI: 10.1061/41131(370)43

Google Scholar

[15] R.Z. Huang, B. J . Kim, S.Y. Lee, Y, Zhang, and Q. Wu. Co-extruded Wood Polymer Composites with talc filled Shells: Morphology, Mechanical and Thermal Expansion Performance. BioResources . Vol. 8(2013), pp.2283-2299.

DOI: 10.15376/biores.8.2.2283-2299

Google Scholar