Effect of Sintering Temperature on MAl2O4 Catalysts Used for the Catalytic Pyrolysis of Microalgae

Article Preview

Abstract:

A series of MAl2O4 (M=Ni2+ and Mg2+) catalysts with high catalyst activity was prepared via co-precipitation. Higher sintering temperature is favorable to catalyst activity. As-prepared MAl2O4 catalysts were characterized by X-ray diffraction, scanning electronic microscopy, and BrunauerEmmettTeller method. MAl2O4 catalysts were evaluated using the heating values of bio-oils derived from the catalytic pyrolysis of microalgae. The heating value of the bio-oils is enhanced along with the increased sintering temperature of MAl2O4 catalysts. The highest heating value using MAl2O4 catalysts sintered at 700 °C was 36.298 MJ/kg, which was higher than the value when using ZSM-5.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

508-513

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N.L. Panwar, S.C. Kaushik, and S. Kothari: Renewable and Sustainable Energy Reviews Vol. 15 (2011), p.1513.

Google Scholar

[2] S. Luo, C. Yi, Y. Zhou: Renewable Energy Vol. 50 (2013), p.373.

Google Scholar

[3] A. P. S. Dias, J. Bernardo, P. Felizardo, M. J. N. Correia: Energy Vol. 41 (2012), p.344.

Google Scholar

[4] J. Singh, S. Gu: Renewable Sustainable Energy Reviews Vol. 14 (2010), p.2596.

Google Scholar

[5] S. Wang, X.M. Jiang, N. Wang, Z. Li, P.M. He: Energy & Fuels Vol. 21 (2007), p.3723.

Google Scholar

[6] M.F. Demirbas: Applied Energy Vol. 88 (2011), p.3473.

Google Scholar

[7] X. Miao, Q. Wu, C. Yang: Journal of Analytical and Applied Pyrolysis Vol. 71 (2004), p.855.

Google Scholar

[8] Y. Liang: Applied Energy Vol. 104 (2013), p.860.

Google Scholar

[9] Y. Chisti: Biotechnology Advances Vol. 25 (2007) p.294.

Google Scholar

[10] W. Yang, Y. Zeng, J. Luo, D. Tong, R. Qing, Y. Fan, C. Hu: Journal of Fuel Chemistry and Technology Vol. 39 (2011), p.664.

Google Scholar

[11] P.T. Williams, N. Nugranad: Energy Vol 25 (2000), p.493.

Google Scholar

[12] P. Pan, C. Hu, W. Yang, Y. Li, L. Dong, L. Zhu, D. Tong, R. Qing, Y. Fan: Bioresource Technology Vol. 101 (2010), p.4593.

Google Scholar

[13] A.G. Gayubo, A.T. Aguayo, A. Atutxa, R. Prieto, J. Bilbao: Energy Fuels Vol. 18 (2004) p.1640.

Google Scholar

[14] A.J. Foster, J. Jae, Y.T. Cheng, G.W. Huber, R.F. Lobo: Applied Catalysis A: General Vol. 423 - 424 (2012), p.154.

Google Scholar

[15] E.F. Iliopoulou, S.D. Stefanidis, K.G. Kalogiannis, A. Delimitis, A.A. Lappas, K.S. Triantafyllidis: Applied Catalysis B: Environmental Vol. 127 (2012), p.281.

DOI: 10.1016/j.apcatb.2012.08.030

Google Scholar

[16] R.M. Freire, F.F. de Sousa, A.L. Pinheiro, E. Longhinotti, J.M. Filho, A.C. Oliveira, P.D.T.C. Freire, A. P. Ayala, A.C. Oliveira: Applied Catalysis A: General Vol. 359 (2009), p.165.

DOI: 10.1016/j.apcata.2009.02.036

Google Scholar

[17] U. Jena, K.C. Das: Energy Fuels Vol. 25 (2011), p.5472.

Google Scholar

[18] Y. Cesteros, P. Salagre, F. Medina, J. E. Sueiras: Chemistry of Materials Vol. 12 (2000), p.331.

Google Scholar

[19] A. Ghosh, R. Sarkar, B. Mukherjee, S.K. Das: Journal of the European Ceramic Society Vol. 24 (2004), p. (2079).

Google Scholar

[20] N.A.S. Nogueira, E.B. da Silva, J.M. Sasaki: Materials Letters Vol. 61 (2007), p.4743.

Google Scholar

[21] R. French, S. Czernik: Fuel Processing Technology Vol. 91 (2010), p.25.

Google Scholar

[22] T.P. Vispute, H. Zhang , A. Sanna, R. Xiao, G.W. Huber: Science Vol. 330 (2010), p.1222.

Google Scholar