Application of MoS2 Nanoflakes in Supercapacitor

Article Preview

Abstract:

In this paper, MoS2 nanoflakes was prepared by a vacuum freeze-drying method. Electrochemical performance of MoS2 nanoflakes has been investigated through cyclic voltammetry, electrochemical impedance spectroscopy analyzer. The results demonstrated that the new electrode maintains a relatively high power density and a good cycle performance in 6 M KOH electrolyte. A maximum specific capacitance of 0.11 F g-1 in an aqueous electrolyte solution has been obtained. The supercapacitor devices exhibit excellent long cycle life along with ~ 40% specific capacitance retained after 500 cycle at scan rates of 500 mV s1.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

524-529

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Meng, C. Z.; Liu, C. H.; Fan, S. S. Flexible carbon nanotube/polyaniline paper-like films and their enhanced electrochemical properties. Electrochem. Commun. 2009, 11, 186-189.

DOI: 10.1016/j.elecom.2008.11.005

Google Scholar

[2] Wang, D. W.; Li, F.; Zhao, J. P.; Ren, W. C.; Chen, Z. G.; Tan, J.; Wu, Z. S.; Gentle, I.; Lu, G. Q.; Cheng, H. M. Fabrication of graphene/polyaniline composite paper via in situ anodic electropolymerization for high-performance flexible electrode. ACS Nano 2009, 3, 1745-1752.

DOI: 10.1021/nn900297m

Google Scholar

[3] Kaempgen, M.; Chan, C. K.; Ma, J.; Cui, Y.; Gruner, G. Printable thin film supercapacitors using single-walled carbon nanotubes. Nano Lett. 2009, 9, 1872-1876.

DOI: 10.1021/nl8038579

Google Scholar

[4] C. Du, N. Pan, Nanotechnology 17 (2006) 5314.

Google Scholar

[5] M.D. Stoller, S. Park, Y. Zhu, J. An, R.S. Ruoff, Nano Lett. 8 (2008) 3498.

Google Scholar

[6] K.H. An, W.S. Kim, Y.S. Park, J. -M. Moon, D.J. Bae, S.C. Lim, Y.S. Lee, Y.H. Lee, Adv. Funct. Mater. 11 (2001) 387.

Google Scholar

[7] J. P. Zheng, J. Electrochem. Soc., 2005, 152, A1864.

Google Scholar

[8] C. Yuan, B. Gao and X. Zhang, J. Power Sources, 2007, 173, 606.

Google Scholar

[9] Y. U. Jeong and A. Manthiram, J. Electrochem. Soc., 2002, 149, A1419.

Google Scholar

[10] Y. Chen and C. Hu, Electrochem. Solid-State Lett., 2003, 6, A210.

Google Scholar

[11] C. C. Hu and C. C. Wang, J. Electrochem. Soc., 2003, 150, A1079.

Google Scholar

[12] H. P. Park, O. O. Park, K. H. Shin, C. S. Jin and J. H. Kim, Electrochem. Solid-State Lett., 2002, 5, H7.

Google Scholar

[13] R. N. Reddy and R. G. Reddy, J. Power Sources, 2003, 124, 330.

Google Scholar

[14] B. E. Conway, Electrochemical Supercapacitors, Kluwer Academic/Plenum Press, New York, (1999).

Google Scholar

[15] H. Lee, M. S. Cho, I. H. Kim, J. D. Nam and Y. Lee, Synth. Met., 2010, 160, 1055.

Google Scholar

[16] D. Choi and P. N. Kumta, J. Electrochem. Soc., 2006, 153, A2298.

Google Scholar

[17] E. Frackowiak, S. Delpeux, K. Jurewicz, K. Szostak, D. Cazorla- Amoros and F. Béguin, Chem. Phys. Lett., 2002, 361, 35.

DOI: 10.1016/s0009-2614(02)00684-x

Google Scholar

[18] C. Peng, S. W. Zhang and D. Jewell, Prog. Nat. Sci., 2008, 18, 777.

Google Scholar

[19] A. Malinauskas, J. Malinauskiene and A. Ramanavicius, Nanotechnology, 2005, 16, 51.

Google Scholar

[20] S. Cho and S. B. Lee, Acc. Chem. Res., 2008, 41, 699.

Google Scholar

[21] Y. R. Ahn,M. Y. Song, S. M. Jo and C. R. Park, Nanotechnology, 2006, 17, 2865.

Google Scholar

[22] J. Yan, T. Wei, J. Cheng, Z. Fan and M. Zhang, Mater. Res. Bull., 2010, 45, 210.

Google Scholar

[23] M. Nakayama, A. Tanaka and Y. Sato, Langmuir, 2005, 21, 5907.

Google Scholar

[24] Whittingham, M. S. Science 1976, 192, 1126.

Google Scholar

[25] Benavente, E.; Santa Ana, M. A.; Mendiz_abal, F.; Gonz_alez, G. Coord. Chem. Rev. 2002, 224, 87.

Google Scholar

[26] J. Chen, N. Kuriyama, H.T. Yuan, H.T. Takeshita, T. Sakai, J. Am. Chem. Soc. 123(2001) 11813-11814.

Google Scholar

[27] M.Y. Sun, J. Adjaye, A.E. Nelson, Appl. Catal. A: Gen. 263 (2004) 131-143.

Google Scholar

[28] M. Chhowalla, G.A.J. Amaratunga, Nature 407 (2000) 164-167.

Google Scholar

[29] Y.Q. Zhu, T. Sekine, Y.H. Li, W.X. Wang, M.W. Fay, H. Edwards, P.D. Brown, N. Fleischer, R. Tenne, Adv. Mater. 17 (2005) 1500-1503.

DOI: 10.1002/adma.200401962

Google Scholar

[30] H. S. S. Ramakrishna Matte, A. Gomathi, A. K. Manna, Dr. D. J. Late, Dr. R. Datta, Prof. Dr. S. K. Pati, Prof. Dr. C. N. R. Rao Angew. Chem. Int. Ed. 2010, 49, 4059-4062.

DOI: 10.1002/anie.201000009

Google Scholar

[31] A. J. Nozik and R. Memming, J. Phys. Chem., 100, 13061 (1996).

Google Scholar

[32] B.P. Bakhmatyuk, B.Y. Venhryn, I.I. Grygorchak, M.M. Micov, J. Power Sources 180 (2008) 890.

DOI: 10.1016/j.jpowsour.2008.02.045

Google Scholar