[1]
Caruana, R.: Multitask Learning. Machine Learning, 28(1997): pp.41-75.
Google Scholar
[2]
Argyriou, A., T. Evgeniou, and M. Pontil: Convex multi-task feature learning. Machine Learning. 73(2008): pp.243-272.
DOI: 10.1007/s10994-007-5040-8
Google Scholar
[3]
Evgeniou, T., C.A. Micchelli, and M. Pontil: Learning multiple tasks with kernel methods. Journal of Machine Learning Research, 2005. 6: pp.615-637.
Google Scholar
[4]
Rakotomamonjy, A., et al.: l(p)-l(q) Penalty for Sparse Linear and Sparse Multiple Kernel Multitask Learning. Ieee Transactions on Neural Networks, 8(2011): pp.1307-1320.
DOI: 10.1109/tnn.2011.2157521
Google Scholar
[5]
Cavallanti, G., N. Cesa-Bianchi, and C. Gentile: Linear Algorithms for Online Multitask Classification. Journal of Machine Learning Research, 11(2010): pp.2901-2934.
Google Scholar
[6]
Chapelle, O., et al.: Boosted multi-task learning. Machine Learning, 85 (2011): pp.149-173.
Google Scholar
[7]
Ross, S., et al.: A Bayesian Approach for Learning and Planning in Partially Observable Markov Decision Processes. Journal of Machine Learning Research, 2011. 12.
Google Scholar
[8]
Pillonetto, G., F. Dinuzzo, and G. De Nicolao: Bayesian Online Multitask Learning of Gaussian Processes. Ieee Transactions on Pattern Analysis and Machine Intelligence, 2(2010): pp.193-205.
DOI: 10.1109/tpami.2008.297
Google Scholar
[9]
Ishibuchi, H. and T. Yamamoto: Rule weight specification in fuzzy rule-based classification systems. Ieee Transactions on Fuzzy Systems, 4(2005): pp.428-435.
DOI: 10.1109/tfuzz.2004.841738
Google Scholar
[10]
van den Berg, J., U. Kaymak, and W.M. van den Bergh: Fuzzy classification using probability-based rule weighting. Proceedings of the 2002 Ieee International Conference on Fuzzy Systems, Vol 1 & 2(2002): pp.991-996.
DOI: 10.1109/fuzz.2002.1006639
Google Scholar