The Temperature-Dependence of the Saturation Voltage for Molecular Assembly System with the Effect of the Intermolecular Spacing

Article Preview

Abstract:

Numerical simulations have been performed to investigate the effect of the temperature on the electronic transport through a small group of molecular assembly system (MAS). The model involves two 1,4-dithiolbenzene (DTB) molecular units stacked in one dimension (1D). The currentvoltage (I-V) and the conductance voltage (G-V) analysis are presented under the influence of the temperature associated with the π-orbital coupling interactions controlled by the intermolecular spacing d. The MAS with reduced d affects significantly the conductance which results in reducing the conductance gap and the saturation voltage Vsat. In addition, the present results show that the temperature rise effect plays an important role in determining the current flow in the saturation region. In this region, it is important to note that Vsat increases linearly when T goes from 50 to 325 K.. To conclude, Vsat can be controlled either by changing the temperature or modifying its intermolecular spacing conformation.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 774-776)

Pages:

593-598

Citation:

Online since:

September 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. D. Bain, et al: J. Am. Chem. Soc. 111 (1989) 7155.

Google Scholar

[2] J. Noh and M. Hara: RIKEN Rev. (2001) No. 38, 49.

Google Scholar

[3] D. M. Collard and M. A. Fox: Langmuir 7 (1991) 1192.

Google Scholar

[4] M. A. Reed, J. M. Tour et al: Science 278 (1997) 252.

Google Scholar

[5] J. Chen, M. A. Reed, A. M. Rawlett, and J. M. Tour: Science 28.

Google Scholar

[6] J. Chen, L. C. Calvet, M. A. Reed, D. W. Car, D. S. Grubisha, and D. Bennet: Chem. Phys. Lett. 313 (1999) 748.

Google Scholar

[7] C. Zhou, et al: Appl. Phys. Lett. 71 (1997) 611.

Google Scholar

[8] M. Buttiker, et al: Phys. Rev. B 31 (1985) 6207.

Google Scholar

[9] S. Datta: Electronic Transport in Mesoscopic (Cambridge University Press, Cambridge, U.K., 1995), p.57.

Google Scholar

[10] Jan M. Rabaey, A. Chandrakasan, B. Nikolic. Digital integrated circuits/ A design prespective, second edition.

Google Scholar

[11] S. Datta: Electronic Transport in Mesoscopic (Cambridge University Press, Cambridge, U.K., 1995), p.57.

Google Scholar

[12] F. Zahid, M. Paulsson, and S. Datta: in Semiconductors and Organic Nano-tecniques, ed. H. Morkov (Academic Press, New York, 2003).

Google Scholar

[13] S. N. Yaliraki et al: J. Am. Chem. Soc. 121(1999) 3428.

Google Scholar

[14] www. nanohub. org.

Google Scholar

[15] A. Boudjella et al. Japanese journal of applied physics Vol. 47, No 6, 2008, pp.4969-4974.

Google Scholar

[16] Aissa Boudjella. 9 th national symposium on polymetric material 2009, December14-16, 2009, Uniten, Putrajaya, Malysia.

Google Scholar

[17] Aissa Boudjella. Applied Mechanicas and materials. Trans Tech publications, Switzerland, Vol. 307(2013), pp.399-403.

Google Scholar

[18] Aissa Boudjella. Applied Mechanicas and materials. Trans Tech publications, Switzerland Vol. 307(2013), pp.404-408.

Google Scholar