The Attenuation Trend of the Propeller Noise

Article Preview

Abstract:

The blade frequency noise of non-cavitation propellers in an non-uniform flow is analyzed in time domain. The unsteady loading (dipole source) on the blade surface is calculated by a potential-based panel method. Through calculation and comparison, the noise attenuation trend of propeller is discussed. The noise decays more quickly in the near field than in the far field. The Attenuation Trend of the Propeller Noise

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 774-776)

Pages:

82-85

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Lighthill M. J. On sound Generated aerodynamically, I: general theory [C]. Proceedings of the Royal Society, 1952, A221: 564–587.

Google Scholar

[2] Ffowcs Williams J. E., Hawkings D. L. Sound generated by turbulence and surfaces in arbitrary motion [J]. Philosophical Transactions of the Royal Society, 1969, A264(1151): 321–342.

Google Scholar

[3] Hanson D. B., Fink M. R. The importance of quadrupole sources in prediction of high speed propeller noise [J]. Journal of Sound and Vibration, 1979, 62(1): 19-38.

DOI: 10.1016/0022-460x(79)90554-6

Google Scholar

[4] Hanson D. B. Helicoidal surface theory for harmonic noise of propellers in the far field[J]. AIAA, 1980, 18(10): 1213-1220.

DOI: 10.2514/3.50873

Google Scholar

[5] Hanson D. B. Influence of propeller design parameters on far-field harmonic noise in forward flight [J]. AIAA, 1980, 18(11): 1313-1319.

DOI: 10.2514/3.50887

Google Scholar

[6] ZHU Xi-qing, TANG Deng-hai, SUN Hong-xing, eta. Study of low-frequency noise Induced by marine propeller[J]. Journal of Hydrodynamics, Ser. A, 2000, 15(1): 74-81.

Google Scholar

[7] Hanson D. B. Compressible helicoidal surface theory for propeller aerodynamics and noise [J]. AIAA, 1983, 21(6): 881-889.

DOI: 10.2514/3.60132

Google Scholar

[8] Farasat F., Brown T. J. A new capability for predicting helicopter rotor and propeller noise including the effect of forward motion [R]. New York: NASA, (1977).

Google Scholar

[9] Farassat F., Succi G. P. The prediction of helicopter discrete frequency noise [J]. Vertica, 1983, 7(4): 309–320.

Google Scholar

[10] Farassat F., Brentner K. S. The uses and abuses of the acoustic analogy in helicopter rotor noise prediction [J]. Journal of the American Helicopter Society, 1988, 33(1): 29–36.

DOI: 10.4050/jahs.33.29

Google Scholar

[11] Casalino D. An advanced time approach for acoustic analogy predictions [J]. Journal of Sound and Vibration, 2003, 261: 583-612.

DOI: 10.1016/s0022-460x(02)00986-0

Google Scholar

[12] Ghader G., Charles H. Validation of a time domain formulation for propeller noise prediction [J]. International Journal of Aeroacoustics, 2006, 5(4): 295-301.

Google Scholar

[13] Seol H., Jung B., Suh J. C. Prediction of non-cavitating underwater propeller noise [J]. Journal of Sound and Vibration, 2002, 257(1): 131-156.

DOI: 10.1006/jsvi.2002.5035

Google Scholar