Start-Up of ANAMMOX Bio-Filter for Domestic Secondary Effluent in Ambient Temperature

Article Preview

Abstract:

The start-up of ANAMMOX bio-filter for domestic secondary effluent was investigated in ambient temperature. The raw water for ANAMMOX bio-filter was the effluent from an anoxic-aerobic (A/O) phosphorous removal system. Nitrification biofilm was successfully transformed into ANAMMOX biofilm during 7 months, with the induction of added nitrite, hydrazine and oxyammonia. The highest TN removal rate reached 6.8 kg/m3/d during start-up, with observed growth rate of 0.0018 h-1 and doubling time of 16.45 d.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

161-167

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Arrigo K. R. Marine microorganisms and global nutrient cycles[J]. Nature, 2005, 437(7057): 349-355.

DOI: 10.1038/nature04159

Google Scholar

[2] Broda E. 2 kinds of lithotrophs missing in nature[J]. Zeitschrift Fur Allgemeine Mikrobiologie, 1977, 17(6): 491-493.

DOI: 10.1002/jobm.19770170611

Google Scholar

[3] Mulder A., Vandegraaf A. A., Robertson L. A., et al. Anaerobic ammonium oxidation discovered in a denitrifying fluidized-bed reactor[J]. Fems Microbiology Ecology, 1995, 16(3): 177-183.

DOI: 10.1111/j.1574-6941.1995.tb00281.x

Google Scholar

[4] Degraaf A. a. V., Debruijn P., Robertson L. A., et al. Autotrophic growth of anaerobic ammonium-oxidizing micro-organisms in a fluidized bed reactor[J]. Microbiology-Uk, 1996, 142: 2187-2196.

DOI: 10.1099/13500872-142-8-2187

Google Scholar

[5] Strous M., Fuerst J. A., Kramer E. H. M., et al. Missing lithotroph identified as new planctomycete[J]. Nature, 1999, 400(6743): 446-449.

DOI: 10.1038/22749

Google Scholar

[6] Schmid M., Twachtmann U., Klein M., et al. Molecular evidence for genus level diversity of bacteria capable of catalyzing anaerobic ammonium oxidation[J]. Systematic and Applied Microbiology, 2000, 23(1): 93-106.

DOI: 10.1016/s0723-2020(00)80050-8

Google Scholar

[7] Egli K., Fanger U., Alvarez P. J. J., et al. Enrichment and characterization of an anammox bacterium from a rotating biological contactor treating ammonium-rich leachate[J]. Archives of Microbiology, 2001, 175(3): 198-207.

DOI: 10.1007/s002030100255

Google Scholar

[8] Fujii T., Sugino H., Rouse J. D., et al. Characterization of the microbial community in an anaerobic ammonium-oxidizing biofilm cultured on a nonwoven biomass carrier[J]. Journal of Bioscience and Bioengineering, 2002, 94(5): 412-418.

DOI: 10.1016/s1389-1723(02)80218-3

Google Scholar

[9] Pynaert K., Wyffels S., Sprengers R., et al. Oxygen-limited nitrogen removal in a lab-scale rotating biological contactor treating an ammonium-rich wastewater[J]. Water Science and Technology, 2002, 45(10): 357-363.

DOI: 10.2166/wst.2002.0369

Google Scholar

[10] Schmid M., Walsh K., Webb R., et al. Candidatus scalindua brodae", sp nov., candidatus "scalindua wagneri, sp nov., two new species of anaerobic ammonium oxidizing bacteria[J]. Systematic and Applied Microbiology, 2003, 26(4): 529-538.

DOI: 10.1078/072320203770865837

Google Scholar

[11] Sliekers A. O., Third K. A., Abma W., et al. Canon and anammox in a gas-lift reactor[J]. Fems Microbiology Letters, 2003, 218(2): 339-344.

DOI: 10.1016/s0378-1097(02)01177-1

Google Scholar

[12] Third K. A., Paxman J., Schmid M., et al. Enrichment of anammox from activated sludge and its application in the canon process[J]. Microbial Ecology, 2005, 49(2): 236-244.

DOI: 10.1007/s00248-004-0186-4

Google Scholar

[13] Kuypers M. M. M., Sliekers A. O., Lavik G., et al. Anaerobic ammonium oxidation by anammox bacteria in the black sea[J]. Nature, 2003, 422(6932): 608-611.

DOI: 10.1038/nature01472

Google Scholar

[14] Rysgaard S., Glud R. N. Anaerobic n-2 production in arctic sea ice[J]. Limnology and Oceanography, 2004, 49(1): 86-94.

DOI: 10.4319/lo.2004.49.1.0086

Google Scholar

[15] Kuypers M. M. M., Lavik G., Woebken D., et al. Massive nitrogen loss from the benguela upwelling system through anaerobic ammonium oxidation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(18): 6478-6483.

DOI: 10.1073/pnas.0502088102

Google Scholar

[16] Kartal B., Rattray J., Van Niftrik L. A., et al. Candidatus anammoxoglobus propionicus, a new propionate oxidizing species of anaerobic ammonium oxidizing bacteria[J]. Systematic and Applied Microbiology, 2007, 30(1): 39-49.

DOI: 10.1016/j.syapm.2006.03.004

Google Scholar

[17] Risgaard-Petersen N., Meyer R. L., Schmid M., et al. Anaerobic ammonium oxidation in an estuarine sediment[J]. Aquatic Microbial Ecology, 2004, 36(3): 293-304.

DOI: 10.3354/ame036293

Google Scholar

[18] Vandegraaf A. A., Debruijn P., Robertson L. A., et al. Metabolic pathway of anaerobic ammonium oxidation on the basis of n-15 studies in a fluidized bed reactor[J]. Microbiology-Uk, 1997, 143: 2415-2421.

DOI: 10.1099/00221287-143-7-2415

Google Scholar

[19] Sliekers A. O., Derwort N., Gomez J. L. C., et al. Completely autotrophic nitrogen removal over nitrite in one single reactor[J]. Water Research, 2002, 36(10): 2475-2482.

DOI: 10.1016/s0043-1354(01)00476-6

Google Scholar

[20] Abma W. R., Driessen W., Haarhuis R., et al. Upgrading of sewage treatment plant by sustainable and cost-effective separate treatment of industrial wastewater[J]. Water Science and Technology, 2010, 61(7): 1715-1722.

DOI: 10.2166/wst.2010.977

Google Scholar

[21] Strous M., Heijnen J. J., Kuenen J. G., et al. The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms[J]. Applied Microbiology and Biotechnology, 1998, 50(5): 589-596.

DOI: 10.1007/s002530051340

Google Scholar

[22] Administration S. E. P. Water and wastewater monitoring analysis method(4th ed)[S]. Beijing: China Environmental Science Press, (2002).

Google Scholar