[1]
A. Buchanan, B. Honey. Energy and Carbon Dioxide Implications of Building Constructions. Energy and Building. 20. (1994) 205-217.
DOI: 10.1016/0378-7788(94)90024-8
Google Scholar
[2]
UNI EN 338. Structural Timber: Class Strength. (2009).
Google Scholar
[3]
UNI EN 14081-1. Timber Structures. Strength graded structural timber with rectangular cross section. Part I: General requirements. (2011).
DOI: 10.3403/30040180u
Google Scholar
[4]
G. Concu, B. De Nicolo & M. Valdés, M. Fragiacomo, A. Menis & N. Trulli. Experimental grading of locally grown timber to be used as structural material. 2nd International Conference of Civil Engineering and Building Materials. 17-18 November 2012 Taylor and Francis Group, London (2013).
DOI: 10.1201/b13165-39
Google Scholar
[5]
UNI 11035-1. Visual strength grading for structural timbers. Part I: Terminology and measurements of features. (2010).
Google Scholar
[6]
UNI 11035-2. Visual strength grading for structural timbers. Part 2: Visual strength grading rules and characteristics values for structural timber population. (2010).
DOI: 10.3403/00560945
Google Scholar
[7]
UNI EN 384. Structural timber: determination of characteristic values of mechanical properties and density. (2010).
Google Scholar
[8]
UNI EN 408. Timber structures Structural timber and glued laminated timber. Determination of some physical and mechanical properties. (2010).
DOI: 10.3403/30159970
Google Scholar
[9]
UNI EN 14081-1. Strength graded structural timber with rectangular cross section. Part I: General Requirements. (2011).
DOI: 10.3403/30288843
Google Scholar
[10]
G. Schickhofer, M. Augustin. Final report: Project INTELLIWOOD – Working package 3 – Strength correspondence. (2001).
Google Scholar
[11]
G. Giordano. Tecnica delle costruzioni in legno 5th Edition. Milan, Italy: Ulrico Hoepli. (2010).
Google Scholar
[12]
M. Piazza, R. Tomasi, R. Modena. Strutture in legno. Materiale, calcolo e progetto secondo le nuove normative europee. Milan, Italy: Ulrico Hoepli. (2005).
Google Scholar
[13]
UNI EN 1310. Round and sawn timber. Method of measurements of features. (1999).
Google Scholar
[14]
X. Wang, F. Divos, C. Pilon, B. K. Brashaw, R. J. Ross, R. F. Pellerin. Assessment of decay in standing timber using stress wave timing nondestructive evaluation tools. A guide for use and interpretation. United States. Department of Agriculture – Forest Service. General Technical Report FPL−GTR−147. (2004).
DOI: 10.2737/fpl-gtr-147
Google Scholar
[15]
B. K. Brashaw, R. J. Vatalaro, J. P. Wacker, R. J. Ross. Condition assessment of timber bridges. 2. Evaluation of several stress-wave tools. United States. Department of Agriculture – Forest Service. General Technical Report FPL–GTR–160. (2005).
DOI: 10.2737/fpl-gtr-160
Google Scholar
[16]
B. Kasal, G. Lear, T. Tannert, Stress Wave, in: B. Kasal, T. Tannert (Eds. ), In Situ Assessment of Structural Timber: RILEM state of the art. Springer. New York, 2010, pp.5-24.
DOI: 10.1007/978-94-007-0560-9_2
Google Scholar
[17]
J. L. Sandoz. Moisture content and temperature effect on ultrasound timber grading. Wood Science and Technology. 27. (1993). 373-380.
DOI: 10.1007/bf00192223
Google Scholar
[18]
A. Hanhijärvi, A. Ranta-Maunus, G. Turk. Potential of strength grading of timber with combined measurement techniques - Report of the Combigrade project– phase 1. VTT Research Notes 568. ESPOO (2005).
Google Scholar
[19]
A. Hanhijärvi, A. Ranta-Maunus. Development of strength grading of timber using combined measurement techniques - Report of the Combigrade project– phase 2. VTT Research Notes 686. ESPOO (2008).
Google Scholar