[1]
J. de Jong, Conservation techniques for old waterlogged wood from shipwrecks found in the Netherlands, in: A.H. Walters (Ed), Biodeterioration Investigation Techniques. London, 1977, pp.295-338.
Google Scholar
[2]
P. Jensen, D.J. Gregory, Selected physical parameters to characterize the state of preservation of waterlogged archaeological wood: a practical guide for their determination, J Archaeol Sci, 33, 4 (2006) 551-559.
DOI: 10.1016/j.jas.2005.09.007
Google Scholar
[3]
M. Riggio, M. Piazza, Hardness test, in B. Kasal, T. Tannert (eds. ) In situ assessment of structural timber. Rilem State of the Art Reports. Springer. Ed. (2010).
DOI: 10.1007/978-94-007-0560-9_10
Google Scholar
[4]
N. Yamaguchi, Screw resistance, in B. Kasal, T. Tannert (eds. ) In situ assessment of structural timber. Rilem State of the Art Reports. Springer. Ed. (2010).
DOI: 10.1007/978-94-007-0560-9
Google Scholar
[5]
F. Rinn, Gucken, Klopfen, Bohren. Zerstörungsfreie Bohrwider-standsmessung als Teil der ingenieurtechnischen, Holzuntersuchung, Bausubstanz, 5 (1993) 49-52.
Google Scholar
[6]
B. Kasal, Semi-destructive method for in-situ evaluation of compressive strength of wood structural members, Forest Prod J, 53 (2003) 55-58.
Google Scholar
[7]
M. Trojanowicz, Modern chemical analysis in archaeometry, Anal Bioanal Chem, 391 (2008) 915–918.
DOI: 10.1007/s00216-008-2077-x
Google Scholar
[8]
M. Zborowska, A. Sandak, J. Sandak, S. Borysiak, W. Pradzynski, Characterization of archaeological wood degradation with selected non-destructive methods, proceedings of International Conference: Wooden Cultural Heritage: Evaluation of Deterioration and Management of Change, (2009).
Google Scholar
[9]
S. Tsuchikawa, A Review of Recent Near Infrared Research for Wood and Paper, Applied Spectroscopy Reviews, 42 (2007) 43-71.
DOI: 10.1080/05704920601036707
Google Scholar
[10]
A. Sandak, J. Sandak, M. Zborowska, W. Pradzynski, Near infrared spectroscopy as a tool for archaeological wood characterization, J Archaeol Sci, 37 (2010) 2093-2101.
DOI: 10.1016/j.jas.2010.02.005
Google Scholar
[11]
A. Sandak, J. Sandak, M. Negri, Application of FT-NIR for determination of wood provenance. Proceedings of IV Conference NIR on the GO, (2010).
DOI: 10.1007/s00226-010-0313-y
Google Scholar
[12]
M. Riggio, A. Sandak, J. Sandak, In-situ assessment of structural timber using selected wave-based NDT methods, proceedings of the 8th International Conference SAHC 2012 (2012) ISBN 978-83-7125-219-8.
Google Scholar
[13]
J. Sandak, A. Sandak, M. Negri, Mechanical testing of wood assisted by infrared spectroscopy and thermal imaging, proceedings of 11th World Conference on Timber Engineering, (2010).
Google Scholar
[14]
A, Sandak, S. Ferrari, J. Sandak, O. Allegretti, N. Terziev, M. Riggio, Monitoring of wood decay by near infrared spectroscopy, Advanced Materials Research, subject to publication in proceedings of the SHATIS13: International Conference on Structural Health Assessment of Timber Structures, in press.
DOI: 10.4028/www.scientific.net/amr.778.802
Google Scholar
[15]
J. Sandak, A. Sandak, D. Pauliny, S. Bonfa, S. Meglioli, Multi sensor approach for monitoring of the changes to wood surface exposed to natural and artificial weathering, proceedings of COST Action FP1006 Workshop: Basics for Chemistry of Wood Surface Modification, (2012).
DOI: 10.4028/www.scientific.net/amr.778.794
Google Scholar
[16]
J. Sandak, A. Sandak, D. Pauliny, M. Riggio, S. Bonfa, S. Meglioli, A multi-sensor approach for prediction of surface service life, Advanced Materials Research, subject to publication in proceedings of the SHATIS13: International Conference on Structural Health Assessment of Timber Structures, in press.
DOI: 10.4028/www.scientific.net/amr.778.794
Google Scholar