[1]
F. Mc Clintock, A criterion for ductile fracture by the growth of holes, Journal of Applied Mechanic. 35 (1968) 363–371.
Google Scholar
[2]
F. McClintock, On the plasticity of the growth of fatigue cracks. in: Drucker DD and Gilman JJ (Eds. ), Fracture of solids. John Wiley, New York, 1963, p.65–102.
Google Scholar
[3]
A. Pineau, Global and local approaches of fracture -Transferability of laboratory test results to components. in: Argon AS (Eds. ), Topics in Fracture and Fatigue. Springer, New-York, 1992) pp.197-234.
DOI: 10.1007/978-1-4612-2934-6_6
Google Scholar
[4]
A. Pineau A, P. Joly, Local versus global approaches to elasticplastic fracture mechanics : Application to ferritic steels and a cast duplex stainless steel. in: Blauel JC and Schwalbe K-H (Eds), Assessment in Components - Fundamentals and Applications, ESIS/EGF9. Mechanical Engineering Publications, London, 1991, pp.381-414.
Google Scholar
[5]
D. Guitard, Mécanique du matériau bois et composites, France, Cepadues – Edition, (1987).
Google Scholar
[6]
M. Méité, O. Pop, F. Dubois, J. Absi., Evaluation of mixed-mode integral invariant for polymer material trough the couple experimental-numerical Process, 14th International Conference on Experimental Mechanics (ICEM14), Poitiers, (2010).
DOI: 10.1051/epjconf/20100631007
Google Scholar
[7]
O. Pop, M. Meite, F. Dubois, J. Absi, Identification algorithm for fracture parameters by combining DIC and FEM approaches, International Journal of Fracture, 170 (2011) 101-114.
DOI: 10.1007/s10704-011-9605-y
Google Scholar
[8]
M. Meite, O. Pop, F. Dubois, J. Absi, Characterization of mixed-mode fracture based on a complementary analysis by means of full-field optical and finite element approaches, International Journal of Fracture, 180 (2013) 41-52.
DOI: 10.1007/s10704-012-9794-z
Google Scholar
[9]
M.A. Sutton, W.J. Wolters, W.H. Peters, W.F. Ranson, S.R. McNeil, Determination of Displacements Using an Improved Digital Correlation Method, Image and Vision Computating, 1 (1983) 133-139.
DOI: 10.1016/0262-8856(83)90064-1
Google Scholar
[10]
H.A. Bruck, S.R. McNeill, M.A. Sutton, W.H. Peters, Digital image correlation using Newton–Raphson method of partial differential correction, Experimental Mechanics, 29 (1989) 261–267.
DOI: 10.1007/bf02321405
Google Scholar
[12]
J. Réthoré, S. Roux, F. Hild, Optimal and noise-robust extraction of Fracture Mechanics parameters from kinematic measurements, Engineering Fracture Mechanics, 78 (2011) 1827-1845.
DOI: 10.1016/j.engfracmech.2011.01.012
Google Scholar
[13]
F. Dubois, C. Chazal, C. Petit, Viscoelastic crack growth process in wood timbers: an approach by the finite element method for mode I fracture, International Journal Fracture, 113 (2002) 367–882.
Google Scholar
[14]
F. Dubois, C. Petit, Modeling of the crack growth initiation in viscoelastic media by the Gθ integral, Engineering Fracture Mechanics, 72 (2005) 2821–2836.
DOI: 10.1016/j.engfracmech.2005.04.003
Google Scholar
[15]
N.I. Muskhelishvili, Some basic problem of mathematical theory of elasticity, English translation, Noordhoff, (1933).
Google Scholar
[16]
M. Williams, On the stress distribution at the base of a stationary crack. ASME, Journal of Applied Mechanic, 24 (1957) 109-114.
Google Scholar
[17]
S. Yoneyama, Y. Morimoto, M. Takashi, Automatic Evaluation of mixed-mode stress intensity factors utilizing digital image correlation. Strain, 42 (2006) 21-29.
DOI: 10.1111/j.1475-1305.2006.00246.x
Google Scholar
[18]
S. Yoneyama, T. Ogawa, Y. Kobayashi, Evaluating mixed-mode stress intensity factors from full-field displacement obtained by optical methods. Engineering Fracture Mechanic, 74 (2007) 1399-1412.
DOI: 10.1016/j.engfracmech.2006.08.004
Google Scholar
[19]
R. Moutou Pitti, Découplage des modes de rupture dans les matériaux viscoélastiques orthotropes : modélisation et expérimentation, PhD thesys, University of Limoges, (2008).
DOI: 10.1016/j.crme.2009.10.008
Google Scholar
[20]
R. Moutou Pitti, F. Dubois, C. Petit, N. Sauvat, Mixed mode fracture separation in viscoelastic orthotropic media: numerical and analytical approach by the Mθv –integral, International Journal of Fracture, 145 (2007) 181–193.
DOI: 10.1007/s10704-007-9111-4
Google Scholar