Characterization of Wood Fracture Using Optical Full Field Methods

Article Preview

Abstract:

In this paper a new formalism based on the complementarity between the optical full field techniques and integral invariant Mtheta is proposed in order to evaluate the fracture parameters in cracked specimen made of wood, under mixed mode loadings. The coupling between the experimental and numerical approaches allows identifying the fracture parameters in terms of energy release rate without any the material elastic properties such as the elastic modulus and the Poissons ratio. The proposed formalism allows also determining, in addition with the fracture parameters, the local elastic properties in terms of reduced elastic compliance. The fracture mixed mode tests are realized using a Single Edge Notch sample made in Douglas with the Arcan fixtures and dried to 11% moisture content and the crack is cutting in Radial-Longitudinal system.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

440-447

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F. Mc Clintock, A criterion for ductile fracture by the growth of holes, Journal of Applied Mechanic. 35 (1968) 363–371.

Google Scholar

[2] F. McClintock, On the plasticity of the growth of fatigue cracks. in: Drucker DD and Gilman JJ (Eds. ), Fracture of solids. John Wiley, New York, 1963, p.65–102.

Google Scholar

[3] A. Pineau, Global and local approaches of fracture -Transferability of laboratory test results to components. in: Argon AS (Eds. ), Topics in Fracture and Fatigue. Springer, New-York, 1992) pp.197-234.

DOI: 10.1007/978-1-4612-2934-6_6

Google Scholar

[4] A. Pineau A, P. Joly, Local versus global approaches to elasticplastic fracture mechanics : Application to ferritic steels and a cast duplex stainless steel. in: Blauel JC and Schwalbe K-H (Eds), Assessment in Components - Fundamentals and Applications, ESIS/EGF9. Mechanical Engineering Publications, London, 1991, pp.381-414.

Google Scholar

[5] D. Guitard, Mécanique du matériau bois et composites, France, Cepadues – Edition, (1987).

Google Scholar

[6] M. Méité, O. Pop, F. Dubois, J. Absi., Evaluation of mixed-mode integral invariant for polymer material trough the couple experimental-numerical Process, 14th International Conference on Experimental Mechanics (ICEM14), Poitiers, (2010).

DOI: 10.1051/epjconf/20100631007

Google Scholar

[7] O. Pop, M. Meite, F. Dubois, J. Absi, Identification algorithm for fracture parameters by combining DIC and FEM approaches, International Journal of Fracture, 170 (2011) 101-114.

DOI: 10.1007/s10704-011-9605-y

Google Scholar

[8] M. Meite, O. Pop, F. Dubois, J. Absi, Characterization of mixed-mode fracture based on a complementary analysis by means of full-field optical and finite element approaches, International Journal of Fracture, 180 (2013) 41-52.

DOI: 10.1007/s10704-012-9794-z

Google Scholar

[9] M.A. Sutton, W.J. Wolters, W.H. Peters, W.F. Ranson, S.R. McNeil, Determination of Displacements Using an Improved Digital Correlation Method, Image and Vision Computating, 1 (1983) 133-139.

DOI: 10.1016/0262-8856(83)90064-1

Google Scholar

[10] H.A. Bruck, S.R. McNeill, M.A. Sutton, W.H. Peters, Digital image correlation using Newton–Raphson method of partial differential correction, Experimental Mechanics, 29 (1989) 261–267.

DOI: 10.1007/bf02321405

Google Scholar

[12] J. Réthoré, S. Roux, F. Hild, Optimal and noise-robust extraction of Fracture Mechanics parameters from kinematic measurements, Engineering Fracture Mechanics, 78 (2011) 1827-1845.

DOI: 10.1016/j.engfracmech.2011.01.012

Google Scholar

[13] F. Dubois, C. Chazal, C. Petit, Viscoelastic crack growth process in wood timbers: an approach by the finite element method for mode I fracture, International Journal Fracture, 113 (2002) 367–882.

Google Scholar

[14] F. Dubois, C. Petit, Modeling of the crack growth initiation in viscoelastic media by the Gθ integral, Engineering Fracture Mechanics, 72 (2005) 2821–2836.

DOI: 10.1016/j.engfracmech.2005.04.003

Google Scholar

[15] N.I. Muskhelishvili, Some basic problem of mathematical theory of elasticity, English translation, Noordhoff, (1933).

Google Scholar

[16] M. Williams, On the stress distribution at the base of a stationary crack. ASME, Journal of Applied Mechanic, 24 (1957) 109-114.

Google Scholar

[17] S. Yoneyama, Y. Morimoto, M. Takashi, Automatic Evaluation of mixed-mode stress intensity factors utilizing digital image correlation. Strain, 42 (2006) 21-29.

DOI: 10.1111/j.1475-1305.2006.00246.x

Google Scholar

[18] S. Yoneyama, T. Ogawa, Y. Kobayashi, Evaluating mixed-mode stress intensity factors from full-field displacement obtained by optical methods. Engineering Fracture Mechanic, 74 (2007) 1399-1412.

DOI: 10.1016/j.engfracmech.2006.08.004

Google Scholar

[19] R. Moutou Pitti, Découplage des modes de rupture dans les matériaux viscoélastiques orthotropes : modélisation et expérimentation, PhD thesys, University of Limoges, (2008).

DOI: 10.1016/j.crme.2009.10.008

Google Scholar

[20] R. Moutou Pitti, F. Dubois, C. Petit, N. Sauvat, Mixed mode fracture separation in viscoelastic orthotropic media: numerical and analytical approach by the Mθv –integral, International Journal of Fracture, 145 (2007) 181–193.

DOI: 10.1007/s10704-007-9111-4

Google Scholar