Human Metallothionein Enhanced Tolerance and Biosorption of Cadmium when Expressed in Saccharomyces cerevisiae

Article Preview

Abstract:

The recombinant Saccharomyces cerevisiae expressing human hepatic metallothionein (MT) was constructed for biosorption of cadmium (II). The gene sequence of mt was modified for codon preference of S. cerevisiae and synthesized using chemical method. The maximal biosorption capability of cadmium compounds Cd2+ of the recombinant increased more than 25.8% compared with the control. For MT-expressed recombinant strains, a rapid adsorption occurred within the first 30 min with a significant level of Cd2+ (55.75mg/g). For comparison, S. cerevisiae cells reach its maximal Cd2+ adsorption capacity (45.02 mg/g) until 2h. Furthermore, recombinant strain were able to withstand the toxicity of Cd2+ and grow. The results indicated that recombinant should be useful in enhancement the tolerance and biosorption of cadmium in practice.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 779-780)

Pages:

195-200

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N. Das, R. Vimala, P. Karthika, Biosorption of heavy metals-An overview, India. J. Biotechnol. 71 (2008) 59-169.

Google Scholar

[2] D. Park, Y.S. Yun, J.M. Park, The Past, Present, and Future Trends of Biosorption, Biotechnol. Bioproc. E. 15 (2010) 86-102.

DOI: 10.1007/s12257-009-0199-4

Google Scholar

[3] J. Wang, C. Chen, Biosorbents for heavy metals removal and their future, Biotechnol. Adv. 27 (2009) 195-226.

Google Scholar

[4] Z. Lin, Y. Ye, Q. Li, Z. Xu, M. Wang, A further insight into the biosorption mechanism of Au(III) by infrared spectrometry, BMC. Biotechnol. 11 (2011) 98-110.

DOI: 10.1186/1472-6750-11-98

Google Scholar

[5] C. Blériot, G. Effantin, F. Lagarde, M.A. Mandrand-Berthelot, A. Rodrigue, RcnB is a periplasmic protein essential for maintaining intracellular Ni and Co concentrations in Escherichia coli, J. Bacteriol. 193 (2011) 3785-3793.

DOI: 10.1128/jb.05032-11

Google Scholar

[6] A. Malik, Metal bioremediation through growing cells, Environ. Int. 30 (2004) 261-278.

Google Scholar

[7] G.M. Gadd, Metals, minerals and microbes: geomicrobiology and bioremediation, Microbiology. 156 (2010) 609-643.

DOI: 10.1099/mic.0.037143-0

Google Scholar

[8] X.C. Chen, Y.P. Wang, Q. Lin, J.Y. Shi, W.X. Wu, Y.X. Chen, Biosorption of copper(II) and zinc(II) from aqueous solution by Pseudomonas putida CZ1, Colloids. Surf. B: Biointerfaces. 46 (2005) 101-107.

DOI: 10.1016/j.colsurfb.2005.10.003

Google Scholar

[9] S. Ghorbani, F. Tabandeh, B. Yakhchali, M.R. Mehrnia, Immobilization of recombinant nanobiofiber CS3 fimbriae onto alginate beads for improvement of cadmium biosorptio, Biotechnol. Bioproc. E. 16 (2011) 1019-1026.

DOI: 10.1007/s12257-011-0023-9

Google Scholar

[10] M. Kiyono, H. Pan-Hou, Genetic engineering of bateria for environmental remediation of mercury, J. Health. Sci. 52 (2006) 199-204.

DOI: 10.1248/jhs.52.199

Google Scholar

[11] J.P. Chen, Y.S. Lin, Sol-gel-immobilized recombinant E. coli for biosorption of Cd2+, J. Chin. Inst. Chem. Eng. 38 (2007) 235-243.

DOI: 10.1016/j.jcice.2007.03.005

Google Scholar

[12] Y.J. Su, J.Q. Lin, D.H. Hao, Bioaccumulation of arsenic in recombinant Escherichia coli expressing human metallothionein, Biotechnol. Bioproc. E. 14 (2009) 565-570.

DOI: 10.1007/s12257-008-0197-y

Google Scholar

[13] J. Wang, C. Chen, Biosorption of heavy metals by Saccharomyces cerevisiae: A review, Biotechnol. Adv. 24 (2006) 427-451.

DOI: 10.1016/j.biotechadv.2006.03.001

Google Scholar

[14] Y. Zhang, C. Fan, Q. Meng, Z. Diao, L. Dong, X. Peng, S. Ma, Q. Zhou, Biosorption of Pb2+ by Saccharomyces cerevisiae in static and dynamic adsorption tests, B. Environ. Contam. Toxi. 83 (2009) 708-712.

DOI: 10.1007/s00128-009-9847-9

Google Scholar

[15] Q. Peng, Y. Liu, G. Zeng, W. Xu, C. Yang, J. Zhang, Biosorption of copper(II) by immobilizing Saccharomyces cerevisiae on the surface of chitosan-coated magnetic nanoparticles from aqueous solution, J. Hazard. Mater. 177 (2010) 676-682.

DOI: 10.1016/j.jhazmat.2009.12.084

Google Scholar

[16] Y. Wu, Y. Wen, J. Zhou, Q. Dai, Y. Wu, The characteristics of waste Saccharomyces cerevisiae biosorption of arsenic(III), Environ. Sci. Pollut. R. 19 (2012) 3371-3379.

DOI: 10.1007/s11356-012-0861-9

Google Scholar

[17] W.C. Kao, J.Y. Wu, C.C. Chang, J.S. Chang, Saccharomyces cerevisiae: a potential biosorbent for biosorption of uranium, J. Hazard. Mater. 169 (2009) 651-658.

Google Scholar