Quasiclassical Trajectory Calculations of Stereodynamics and Product State Distributions in the Reaction of H with OCl

Article Preview

Abstract:

A first quasiclassical trajectory calculation for the reaction H + OCl OH + Cl, HCl + O has been carried out on the ground 11A' potential energy surface (PES) at the collision energy of 7.6 kcal/mol. The stereodynamics and product state distributions were focused on computation and analysis. It was found that, for both the OH and HCl products, the product rotational alignment and orientation were very weak. Most of the OH products are at lower vibrational levels. The HCl products dominantly populate in the ground vibrational state v'=0. Inverted rotational state distributions were found in each of the vibrational state for both the OH and HCl products. As a consequence, the title reaction takes place dominantly through an indirect mechanism involving a long-lived complex.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 781-784)

Pages:

14-18

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R.J. Cicerone: Science Vol. 237 (1987), p.110.

Google Scholar

[2] N. Balucani, L. Beneventi, P. Casavecchia and G.G. Volpi: Chem. Phys. Lett. Vol. 180 (1991), p.34.

Google Scholar

[3] H. Kohguchi and T. Susuki: Chem. Phys. Chem. Vol. 7 (2006), p.1250.

Google Scholar

[4] H. Kohguchi, T. Susuki, S. Nanbu, T. Ishida, G.V. Mil'nikov, P. Oloyede and H. Nakamura: J. Phys. Chem. A Vol. 112 (2008), p.818.

Google Scholar

[5] K.A. Peterson, S. Skokov and J. M. Bowman: J. Chem. Phys. Vol. 111 (1999), p.7446.

Google Scholar

[6] M. Bittererova, J.M. Bowman and K. A. Peterson: J. Chem. Phys. Vol. 113 (2000), p.6186.

Google Scholar

[7] S. Nanbu, M. Aoyagi, H. Kamisaka, H. Nakamura, W. Bian and K. Tanaka: J. Theor. Comput. Chem. Vol. 1 (2002), p.263.

Google Scholar

[8] Q. Wei and V. W. -K. Wu: Mol. Phys. Vol. 107 (2009), p.1453.

Google Scholar

[9] Q. Wei, V. W. -K. Wu and B. Zhou: J. Theor. Comput. Chem. Vol. 8 (2009), p.1177.

Google Scholar

[10] H. Yang, K. -L. Han, S. Nanbu, H. Nakamura, G.G. Balint-Kurti, H. Zhang, S.C. Smith and M. Hankel: J. Phys. Chem. A Vol. 112 (2008), p.7947.

Google Scholar

[11] H. Yang, K. -L. Han, S. Nanbu, H. Nakamura, G.G. Balint-Kurti, H. Zhang, S.C. Smith and M. Hankel: J. Chem. Phys. Vol. 128 (2008), p.014308.

Google Scholar

[12] P. Bargueno, P. G. Jambrina, J. M. Alvarino, M. Menendez, E. Verdasco, M. Hankel, S. C. Smith, F. J. Aoiz and T. Gonzalez-Lezana: Phys. Chem. Chem. Phys. Vol. 13 (2011), p.8502.

DOI: 10.1039/c0cp02619k

Google Scholar

[13] K.L. Han, G.Z. He and N.Q. Lou: J. Chem. Phys. Vol. 105 (1996), p.8699.

Google Scholar

[14] M.L. Wang, K.L. Han and G.Z. He: J. Phys. Chem. A Vol. 102 (1998), p.20204.

Google Scholar

[15] K.L. Han, L. Zhang, D.L. Xu, G.Z. He and N.Q. Lou: J. Phys. Chem. A Vol. 105 (2001), p.2956.

Google Scholar

[16] X. Zhang and K.L. Han: Int. J. Quant. Chem. Vol. 106 (2006), p.1815.

Google Scholar

[17] X. -F. Yue and M. -S. Wang: Chem. Phys. Vol. 405 (2012), p.155.

Google Scholar