Effect of Reagent Vibrational Excitation on Product Rotational Polarization in Reactions Li + DF (v=0-3, j=0) → LiF(v', j') + D

Article Preview

Abstract:

A quasiclassical trajectory calculation is carried out to investigate the effect of reagent vibrational excitation on product rotational polarization in the reactions Li + DF (v=0-3, j=0) ---> LiF(v', j') + D. It is found that the reagent vibational excitation highly enhanced the product rotational alignment, however, the enhancement is not monotonically increasing with the gradual increase of the vibrational quantum number from v=0 to v=3. The product rotational orientation varies from the negative to positive direction of y axis with the increasing vibrational quantum number from v=0 to v=3.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 781-784)

Pages:

9-13

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H.J. Loesch and F. Stienkemeier: J. Chem. Phys. Vol. 98 (1993), p.9570.

Google Scholar

[2] F. J. Aoiz, E. Verdasco, V. Saez Rabanos, H.J. Loesch, M. Menendez and F. Stienkemeier: Phys. Chem. Chem. Phys. Vol. 2 (2000), p.541.

Google Scholar

[3] C.H. Becker, P. Casavecchia, P.W. Tiedemann, J.J. Valentini and Y.T. Lee: J. Chem. Phys. Vol. 73 (1980), p.2833.

Google Scholar

[4] A.J. Hudson, H.B. Oh, J.C. Polanyi and P. Piecuch: J. Chem. Phys. Vol. 113 (2000), p.9897.

Google Scholar

[5] R. Bobbenkamp, H.J. Loesch, M. Mudrich and F. Stienkemeier: J. Chem. Phys. Vol. 135 (2011), p.204306.

Google Scholar

[6] G.A. Parker, A. Laganà, S. Crocchianti and R.T. Pack: J. Chem. Phys. Vol. 102 (1995), p.1238.

Google Scholar

[7] A. Aguado, M. Paniagua, M. Lara and O. Roncero: J. Chem. Phys. Vol. 106 (1997), p.1013.

Google Scholar

[8] A.W. Jasper, M.D. Hack, D.G. Truhlar and P. Piecuch: J. Chem. Phys. Vol. 116 (2002), p.8353.

Google Scholar

[9] X. -F. Yue and M. -S. Wang: Chem. Phys. Vol. 405 (2012), p.155.

Google Scholar

[10] J. Cheng and X. -F. Yue: Chin. Phys. Lett. Vol. 28 (2011), p.083102.

Google Scholar

[11] X. -F. Yue: Chin. Phys. B Vol. 21 (2012), p.073401.

Google Scholar

[12] A.W. Jasper, M.D. Hack, A. Chakraborty, D.G. Truhlar and P. Piecuch: J. Chem. Phys. Vol. 115 (2001), p.7945.

Google Scholar

[13] M. Lara, A. Aguado, O. Roncero and M. Paniagua: J. Chem. Phys. Vol. 109 (1998), p.9391.

Google Scholar

[14] A. Zanchet, O. Roncero, T. González-Lezana, A. Rodríguez-López, A. Aguado, C. Sanz-Sanz and S. Gómez-Carrasco: J. Phys. Chem. A Vol. 113 (2009), p.14488.

DOI: 10.1021/jp9038946

Google Scholar

[15] L. González-Sánchez, O. Vasyutinskii, A. Zanchet, C. Sanz-Sanz and O. Roncero: Phys. Chem. Chem. Phys. Vol. 13 (2011), p.13656.

DOI: 10.1039/c0cp02452j

Google Scholar

[16] K.L. Han, G.Z. He and N.Q. Lou: J. Chem. Phys. Vol. 105 (1996), p.8699.

Google Scholar

[17] M.L. Wang, K.L. Han and G.Z. He: J. Phys. Chem. A Vol. 102 (1998), p.20204.

Google Scholar

[18] K.L. Han, L. Zhang, D.L. Xu, G.Z. He and N.Q. Lou: J. Phys. Chem. A Vol. 105 (2001), p.2956.

Google Scholar

[19] X. Zhang and K.L. Han: Int. J. Quant. Chem. Vol. 106 (2006), p.1815.

Google Scholar