[1]
Maurice-Van Eijndhoven, M. H. T., Hiemstra, S. J. and Calus, M. P. Short communication: milk fat composition of 4 cattle breeds in the Netherlands. J. Dairy Sci. 94 (2011), pp.1021-1025.
DOI: 10.3168/jds.2009-3018
Google Scholar
[2]
Jeurnink, T. J. M. and Kruif, K. G. D. Changes in milk on heating: viscosity measurements. J. Dairy Res. 60 (1993), pp.139-150.
DOI: 10.1017/s0022029900027461
Google Scholar
[3]
Anema S. G, Klostermeyer H. ζ-Potentials of casein micelles from reconstituted skim milk heated at 120°C. Int. Dairy J. 6 (1996), pp.673-687.
DOI: 10.1016/0958-6946(95)00070-4
Google Scholar
[4]
Ahmad, S., Gaucher, I., Rousseau, F., Beaucher, E., Piot, M., Grongnet, J. and Gaucheron, F. Effects of acidification on physico-chemical characteristics of buffalo milk: A comparison with cow's milk. Food Chem. 106 (2008), pp.11-17.
DOI: 10.1016/j.foodchem.2007.04.021
Google Scholar
[5]
Ménard, O., Ahmad, S., Rousseau, F., Briard-Bion, V., Gaucheron, F. and Lopez, C. Buffalo vs. cow milk fat globules: Size distribution, zeta-potential, compositions in total fatty acids and in polar lipids from the milk fat globule membrane. Food Chem. 120 (2010).
DOI: 10.1016/j.foodchem.2009.10.053
Google Scholar
[6]
Lindmark-Månsson H, Fondén R, Pettersson H-E. Composition of Swedish dairy milk. Int. Dairy J. 13 (2003), pp.409-425.
DOI: 10.1016/s0958-6946(03)00032-3
Google Scholar
[7]
Benincasa C, Lewis J, Sindona G et al. The use of multi element profiling to differentiate between cow and buffalo milk. Food Chem. 110 (2008), pp.257-262.
DOI: 10.1016/j.foodchem.2008.01.049
Google Scholar
[8]
FAO. Bulletiin of the international dairy federation. (2010), Bulletin No. 446/(2010).
Google Scholar
[9]
Pang, K., Zeng, Q. K., Zheng, Q., Li, M. Y., Shi, B. X. and Ren, F. Z. Study on changes of chemical compositions in Murrah × Xilin buffalo milk. Food Sci 28 (2007), pp.44-48.
Google Scholar
[10]
Slyke D. D. V. On the measurement of buffer values and on the relationship of buffer value to the dissociation constant and reaction of the buffer solution. J. Biol. Chem. 52 (1922), pp.525-570.
DOI: 10.1016/s0021-9258(18)85845-8
Google Scholar
[11]
Hassan, A. N., F, F. J. and A, S. K. Textural properties of yogurt made with encapsulated no ropy lactic cultures. J Dairy Sci 79 (1996), pp.2098-2103.
DOI: 10.3168/jds.s0022-0302(96)76583-9
Google Scholar
[12]
Doleyres Y, Schaub L, Lacroix C. Comparison of the functionality of exopolysaccharides produced In situ or added as bioingredients on yogurt properties. J. Dairy Sci. 88 (2005), pp.4146-4156.
DOI: 10.3168/jds.s0022-0302(05)73100-3
Google Scholar
[13]
Salaün F, Mietton B, Gaucheron F. Buffering capacity of dairy products. Int. Dairy J. 15 (2005), pp.95-109.
DOI: 10.1016/j.idairyj.2004.06.007
Google Scholar
[14]
Kristoa, E., Biliaderisb, C. G. and Tzanetakis, N. Modelling of the acidification process and rheological properties of milk fermented with a yogurt starter culture using response surface methodology. Food Chem. 83 (2003) pp.437-446.
DOI: 10.1016/s0308-8146(03)00126-2
Google Scholar
[15]
Shiby V. K, Mishra H. N. Modelling of acidification kinetics and textural properties in dahi (Indian yogurt) made from buffalo milk using response surface methodology. Int. J. Dairy Technol. 61 (2008), pp.284-289.
DOI: 10.1111/j.1471-0307.2008.00411.x
Google Scholar
[16]
Ganai N. A, Bovenhuis H, van Arendonk JA and Visker, M. H. Novel polymorphisms in the bovine beta-lactoglobulin gene and their effects on beta-lactoglobulin protein concentration in milk. Anim Genet 40 (2009), pp.127-133.
DOI: 10.1111/j.1365-2052.2008.01806.x
Google Scholar