Purification and Structure Study on Exopolysaccharides Produced by Lactobacillus paracasei KL1-Liu from Tibetan Kefir

Article Preview

Abstract:

To investigate the pure conditions of exopolysaccharides produced by Lactobacillus paracasei KL1-Liu from Tibetan Kefir, and to analyse the structure, we used Multi-level single-factor test to purify EPS by Sepharose CL-6B. And the purity of EPS was detected by UV scan and high performance liquid chromatogram (HPLC). EPS molecular weight and monosaccharide composition were determined by HPLC. Results: Adoption phosphate buffer gradient elution 0.02-0.10 mol/L, the velocity 0.25 mL/min, the sample concentration 1.0 mg/mL, the sample capacity 1.0 mL. Under this purification conditions, components EPSa and EPSb were obtained. The purities of EPSa and EPSb were 82.82% and 91.74% respectively, which were 1.4 and 1.5 times of the pre-purification. Purity Test results showed that EPSa and EPSb polysaccharide were single components, basically no nucleic acid and protein in them. Structural analysis revealed that the molecular weight of EPSa and EPSb were 4.60×104 Da and 2.12×104 Da detected by HPLC. EPSa monosaccharide components were glucose and rhamnose, and the molar ratio was 1:0.68. EPSb were composed of glucose, xylose and rhamnose, and the molar ratio was 1:0.77:0.69.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 781-784)

Pages:

1513-1518

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Oberman H., Libudzisz Z. 1998. Fermented milks. In: Wood BJB, editor. Microbiology of fermented foods. London: Blackie Academic and Professional. 308-350.

DOI: 10.1007/978-1-4613-0309-1_11

Google Scholar

[2] Garrote G.L., Abraham A.G., De Antoni G.L. 1997. Preservation of kefir grains, a comparative study. Lebensm. -Wiss. Technol 30: 77-84.

DOI: 10.1006/fstl.1996.0135

Google Scholar

[3] Santos, A., San Mauro, M., Sanchez, J., Torres, J.M. and Mar-Quinta, D. 2003. The antimicrobial properties of different strains of Lactobacillus spp. isolated from kefir. Syst. Appl. Microbiol. 26, 434–437.

DOI: 10.1078/072320203322497464

Google Scholar

[4] Rodrigus, K.L., Gaudino Caputo, L.R., Tavares Carvallo, J.C., Evangelista, J. and Schneedorf, J.M. 2005. Antimicrobial and healing activity of kefir and kefiran extract. Int. J. Antimicrob. Agents 25, 404–408.

DOI: 10.1016/j.ijantimicag.2004.09.020

Google Scholar

[5] Micheli, L., Uccelletti, D., Palleschi, C. and Crescenzi, V. 1999. Isolation and characterization of a ropy lactobacillus strain producing the exopolysaccharide quefiran. Appl. Microbiol. Biotechnol. 53, 69–74.

DOI: 10.1007/s002530051616

Google Scholar

[6] Liu, C., Li, X.D., Li, Y.H., Feng, Y., Zhou, S., Wang, F.S. 2008. Structural characterisation and antimutagenic activity of a novel polysaccharide isolated from Sepiella maindroni ink. Food Chemistry 110: 807–813.

DOI: 10.1016/j.foodchem.2008.02.026

Google Scholar

[7] Wang, S., Zheng, Z., Weng, Y., Yu, Y., Zhang, D., Fan, W. 2004. Angiogenesis and anti-angiogenesis activity of Chinese medicinal herbal extracts. Life Sci 74: 2467–2478.

DOI: 10.1016/j.lfs.2003.03.005

Google Scholar

[8] Religa, P., Kazi, M., Thyberg, J., Gaciong, Z., Swedenborg, J., Hedin, U. 2000. Fucoidan inhibits smooth muscle cell proliferation and reduces mitogen-activated protein kinase activity. Eur J Vasc Endovasc Surg 20: 419–426.

DOI: 10.1053/ejvs.2000.1220

Google Scholar

[9] Medrano, M., Pérez, P.F., Abraham, A.G. 2008. Kefiran antagonizes cytopathic effects of Bacillus cereus extracellular factors. International Journal of Food Microbiology 122: 1–7.

DOI: 10.1016/j.ijfoodmicro.2007.11.046

Google Scholar

[10] Hwang, H.J., Kwon, M.J., Kim, I.H., Nam, T.J. 2008. The effect of polysaccharide extracted from the marine alga Capsosiphon fulvescens on ethanol administration. Food and Chemical Toxicology 46(8): 2653–2657.

DOI: 10.1016/j.fct.2008.04.027

Google Scholar

[11] Yang, Z., Huttunen, E., Staaf, M., Widmalm, G., and Tenhu, H. 1999. Separation, purification and characterisation of extracellular polysaccharides produced by slime-forming Lactococcus lactis ssp. cremoris strains, Int. Dairy J., 9, 631–638.

DOI: 10.1016/s0958-6946(99)00133-8

Google Scholar

[12] Cerning, J. 1990. Exocelluler polysaccharides produc ed by lactic acid bacteria, FEMS Microbiol. Rev., 87, 113 – 130.

DOI: 10.1111/j.1574-6968.1990.tb04883.x

Google Scholar

[13] Kitazawa, H., Harata , T., Uemura, J., Saito, T., Kaneko, T., and Itoh, T. 1998. Phosphate group requirement for mitogenic activation of lymphocytes by an extracellular phosphopolysaccharide from Lactobacillus delbrueckii spp. bulgaricus, Int. J. Food Microbiol., 40, 169 – 175.

DOI: 10.1016/s0168-1605(98)00030-0

Google Scholar

[14] Pigeon, R. M., Cuesta, E. P., and Gilliland, S. E. 2002. Binding of free bile acids by cells of yogurt starter culture bacteria, J. Dairy Sci., 85, 2705 – 2710.

DOI: 10.3168/jds.s0022-0302(02)74357-9

Google Scholar

[15] François, Z.N., Ahmed, N.E., Félicité, M.T., and El-Soda, M. 2004. Effect of ropy and capsular exopolysaccharide s produc ing strain of Lactobacillus plantarum 162RM on characteristics and functionality of fermented milk and soft Kareish type cheese, Afr. J. Biotechnol., 3 , 512 –518.

DOI: 10.5897/ajb2004.000-2102

Google Scholar

[16] Dabour, N., Kheadr, E., Fliss, I., and LaPointe, G. 2005. Impact of ropy and capsular exopolysaccharide producing strains of Lactococcu s lactis subsp. cremorison reduced-fat cheddar cheese production and whey composition, Int. Dairy J., 15, 459 – 471.

DOI: 10.1016/j.idairyj.2004.08.011

Google Scholar

[17] Petersen, B.L., Dave, R.I., McMahon, D.J., Oberg, C.J., and Broadbent, J.R. 2000. In fluence of capsular and ropy exopolysaccharide producing Streptococcus thermophilus on mozzarella cheese and whey, J. Dairy Sci., 83, 1952 –(1956).

DOI: 10.3168/jds.s0022-0302(00)75071-5

Google Scholar

[18] Kandler O., Kunath P. 1983. Lactobacillus kefir sp. nov., a component of the microflora of kefir. Syst Appl Microbiol 4: 286-294.

DOI: 10.1016/s0723-2020(83)80057-5

Google Scholar

[19] Fujisawa, T., Adachi, S., Toba, T., Arimara, K., Mitsuoka, T. 1988. Lactobacillus kefiranofacienssp. nov., isolated from kefir grains. Int J Syst Bacteriol 38: 12-14.

DOI: 10.1099/00207713-38-1-12

Google Scholar

[20] Yokoi, H., Fujii, Y., Mukai, T., Toba, T., Adachi, S. 1991. Some taxonomical characteristic of encapsulated Lactobacillus sp. KPB-167B isolated from kefir grains and characterisation of its extracellular polysaccharide. Int J Food Microbiol 13: 257-264.

DOI: 10.1016/0168-1605(91)90083-2

Google Scholar

[21] Takizawa, S., Kojima, S., Tamura, S., Fujinaga, S., Benno Y., Nakase, T. 1994. Lactobacillus kefirgranum sp. nov. and Lactobacillus parakefir sp. nov., two new species from kefir grains. Int J Syst Bacteriol 44: 435-438.

DOI: 10.1099/00207713-44-3-435

Google Scholar