Degradation of Organophosphorus Pesticide in a Packed-Bed Plasma Reactor: Effects of Operating Parameters and Kinetics Study

Article Preview

Abstract:

The degradation effectiveness and reaction kinetics of representative organophosphorus (OP) pesticide in a packed-bed plasma reactor have been studied. Important parameters, including peak voltage, pulse frequency, gas-flow rate, initial concentration, diameter of catalyst particles, and thickness of catalyst bed which influences the removal efficiency, were investigated. Experimental results indicated that rogor removal efficiency as high as 80% can be achieved at 35 kV with the gas flow rate of 800 mL/min and initial concentration of 11.2 mg/m3. The removal efficiency increased with the increase of pulsed high voltage, and pulse frequency, the decrease of the diameter of catalyst particles and the thickness of catalyst bed. Finally, a model was established to predict the degradation of the rogor, which generally can simulate the experimental measurements to some degree.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 781-784)

Pages:

1637-1645

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Munnecke,I. H: Applied and environmental microbio1ogy Vol. 68(2002),P. 3371- 3376.

Google Scholar

[2] A.K. Tayal, D. Linika, K. Inderjeet: Biomed. Chromatogr Vol. 13 (1999),P. 220–228.

Google Scholar

[3] L.Z. Zhu, B.L. Chen, S. Tao: Environ. Sci. Technol Vol. 37 (2003), P . 4001–4006.

Google Scholar

[4] Ghaly M.Y. Hartel,G. Mayer, R: Waste Management Vol. 21(2001),P. 41- 47.

Google Scholar

[5] Ziegmann,M. Doll,T. Frimmel, H,F. Acta hydrochemicaet hydrobiologica Vol. 34(2006),P. 146-154.

Google Scholar

[6] S. Delagrange, L. Pinard, J. M: Appl. Catal. B: Environ Vol. 68 (2006),P. 92–98.

Google Scholar

[7] Urashima K. Kim,S. J . Chang , J .S.J. Adv. Journal of Advanced Oxidation Technologies Vol. 6(2003),P. 123-131.

Google Scholar

[8] Urashima,K. Chang J. S: IEEE Trans. Dielectr. Electr. Insul Vol. 7(2001),P. 602-614.

Google Scholar

[9] Chang,M. B, Chang,J. S: Ind. Eng. Chem. Res Vol. 45(2006),P. 4101–4109.

Google Scholar

[10] W. Mista , R. Kacprzyk: Catalysis Today Vol. 137 (2008) ,P. 345.

Google Scholar

[11] Hyun H.K. Atsushi,O. Shigeru, F: IEEE Transaction on Plasma Science Vol. 34(2006),P. 984-995.

Google Scholar

[12] Guo Y.F. Ye,D.Q. Chen,K. F: Journal of Environmental Sciences Vol. 18(2006),P. 276-280.

Google Scholar

[13] Francke K.P. Miessner,H. Rudolph,R. Catalysis Today Vol. 59(2000),P. 411-416.

DOI: 10.1016/s0920-5861(00)00306-0

Google Scholar

[14] T. Oda: Journal of Electrostatics Vol. 57(2003),P. 293-311.

Google Scholar

[15] Holzer,F. Roland,U. Kopinke,F. D: Applied Catalysis B: Environmental Vol. 38(2002),P. 163-181.

Google Scholar

[16] Roland,F. Holzer F.D. Kopinke: Appl. Catal. B: Environ Vol. 58(2005),P. 217-226.

Google Scholar

[17] Roland,U. F. Holzer, F.D. Kopinke. Appl. Catal. B: Environ Vol. 58 (2005),P. 227-234.

Google Scholar

[18] Kim Y.H. Hong,S. H: IEEE Transactions On Plasma Science Vol. 30(2002),P. 168-169.

Google Scholar

[19] Shim,J. H, Choi,S. K: IEEE Trans. On Magnetics Vol. 38(2002),P. 1181-1184.

Google Scholar

[20] A.D. Koutsospyros : IEEE Trans. Ind. Applicat Vol. 33(2005),P. 42-49.

Google Scholar

[21] Wakao,N. Kaguei, S: Heat and mass transfer in packed beds(Goron and breach science publishers, inc. 1982).

Google Scholar

[22] Stefan Schmid. Matthias C. Jecklin, Renato Zenobi: Chemosphere Vol. 79 (2010),P. 124–130.

Google Scholar

[23] Jim Van Durme. Jo Dewulf . Christophe Leys: Applied Catalysis B: Environmental Vol. 78 (2008),P. 324–333.

Google Scholar

[24] E.R.G. Eckert, R.M. Drake: Analysis of heat and mass transfer. McGraw Hill, New York , ( 1972).

Google Scholar