[1]
K. L. Chong, N. Peng, H. Yin, et al. Food Sustainability by Designing and Modelling a Membrane Controlled Atmosphere Storage System: Journal of Food Engineering. vol. 114 (2013), pp.361-374.
DOI: 10.1016/j.jfoodeng.2012.08.027
Google Scholar
[2]
K. Majeed, M. Jawaid, A. Hassan, et al. Potential Materials for Food Packaging from Nanoclay/Natural Fibres Filled Hybrid Composites: Materials & Design. vol. 46 (2013), pp.391-410.
DOI: 10.1016/j.matdes.2012.10.044
Google Scholar
[3]
K. Marsh and B. Bugusu. Food Packaging—Roles, Materials, and Environmental Issues: Journal of Food Science. vol. 72 (2007), p. R39-R55.
DOI: 10.1111/j.1750-3841.2007.00301.x
Google Scholar
[4]
D. Sivakumar and L. Korsten. Fruit Quality and Physiological Responses of Litchi Cultivar Mclean's Red to 1-Methylcyclopropene Pre-Treatment and Controlled Atmosphere Storage Conditions: LWT - Food Science and Technology. vol. 43 (2010).
DOI: 10.1016/j.lwt.2010.02.001
Google Scholar
[5]
V. Del-Valle, P. Hernández-Muñoz, R. Catalá, et al. Optimization of an Equilibrium Modified Atmosphere Packaging (Emap) for Minimally Processed Mandarin Segments: Journal of Food Engineering. vol. 91 (2009), pp.474-481.
DOI: 10.1016/j.jfoodeng.2008.09.027
Google Scholar
[6]
C. Costa, A. Lucera, A. Conte, et al. Effects of Passive and Active Modified Atmosphere Packaging Conditions on Ready-to-Eat Table Grape: Journal of Food Engineering. vol. 102 (2011), pp.115-121.
DOI: 10.1016/j.jfoodeng.2010.08.001
Google Scholar
[7]
C. B. Watkins and J. F. Nock. Rapid 1-Methylcyclopropene (1-Mcp) Treatment and Delayed Controlled Atmosphere Storage of Apples: Postharvest Biology and Technology. vol. 69 (2012), pp.24-31.
DOI: 10.1016/j.postharvbio.2012.02.010
Google Scholar
[8]
S. -K. Jung and C. B. Watkins. Involvement of Ethylene in Browning Development of Controlled Atmosphere-Stored Empire, Apple Fruit: Postharvest Biology and Technology. vol. 59 (2011), pp.219-226.
DOI: 10.1016/j.postharvbio.2010.08.019
Google Scholar
[9]
S. G. Gwanpua, B. E. Verlinden, M. L. A. T. M. Hertog, et al. Kinetic Modeling of Firmness Breakdown in Braeburn, Apples Stored under Different Controlled Atmosphere Conditions: Postharvest Biology and Technology. vol. 67 (2012), pp.68-74.
DOI: 10.1016/j.postharvbio.2011.12.010
Google Scholar
[10]
O. P. Chauhan, P. S. Raju, N. Ravi, et al. Effectiveness of Ozone in Combination with Controlled Atmosphere on Quality Characteristics Including Lignification of Carrot Sticks: Journal of Food Engineering. vol. 102 (2011), pp.43-48.
DOI: 10.1016/j.jfoodeng.2010.07.033
Google Scholar
[11]
A. Ortiz, J. Graell, M. L. López, et al. Volatile Ester-Synthesising Capacity in Tardibelle, Peach Fruit in Response to Controlled Atmosphere and 1-Mcp Treatment: Food Chemistry. vol. 123 (2010), pp.698-704.
DOI: 10.1016/j.foodchem.2010.05.037
Google Scholar
[12]
D. S. Yang, R. R. Balandrán-Quintana, C. F. Ruiz, et al. Effect of Hyperbaric, Controlled Atmosphere, and Uv Treatments on Peach Volatiles: Postharvest Biology and Technology. vol. 51 (2009), pp.334-341.
DOI: 10.1016/j.postharvbio.2008.09.005
Google Scholar
[13]
D. Ustun, E. Candir, A. E. Ozdemir, et al. Effects of Modified Atmosphere Packaging and Ethanol Vapor Treatment on the Chemical Composition of Red Globe, Table Grapes During Storage: Postharvest Biology and Technology. vol. 68 (2012), pp.8-15.
DOI: 10.1016/j.postharvbio.2012.01.006
Google Scholar
[14]
S. L. S. Bico, M. F. J. Raposo, R. M. S. C. Morais, et al. Combined Effects of Chemical Dip and/or Carrageenan Coating and/or Controlled Atmosphere on Quality of Fresh-Cut Banana: Food Control. vol. 20 (2009), pp.508-514.
DOI: 10.1016/j.foodcont.2008.07.017
Google Scholar
[15]
Y. Xing, X. Li, Q. Xu, et al. Effects of Chitosan-Based Coating and Modified Atmosphere Packaging (Map) on Browning and Shelf Life of Fresh-Cut Lotus Root (Nelumbo Nucifera Gaerth): Innovative Food Science & Emerging Technologies. vol. 11 (2010).
DOI: 10.1016/j.ifset.2010.07.006
Google Scholar
[16]
T. Iqbal, F. A. S. Rodrigues, P. V. Mahajan, et al. Mathematical Modeling of the Influence of Temperature and Gas Composition on the Respiration Rate of Shredded Carrots: Journal of Food Engineering. vol. 91 (2009), pp.325-332.
DOI: 10.1016/j.jfoodeng.2008.09.012
Google Scholar