Effects of Different Pretreatment Pressures on the Catalytic Performance of Catalyst Derived from (CO)6Co2CC(COOH)2 for Fischer-Tropsch Synthesis

Article Preview

Abstract:

New type of Co-based catalyst was prepared using (CO)6Co2CC(COOH)2 as precursor supported on γ-Al2O3 support. The effects of pretreatment pressures on the catalysts properties and the F-T synthesis performance were investigated in details. Combined with TEM characterization technology, it was found that under different pretreatment pressures (0 MPa, 1.0 MPa, 2.0 MPa), the structure of carbonyl clusters underwent different changes. Moreover, the aggregation degree of cobalt species depends on the pretreated pressure applied. In addition, the catalytic performance of the cobalt carbonyl catalyst pretreated with different pressures was performed and both CO conversion and C5+ selectivity exhibited the order of Co2/2MPa/Al2O3 > Co2/1MPa/Al2O3 > Co2/0MPa/Al2O3.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 781-784)

Pages:

186-189

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. D. Adams and B. Captain, Accounts. Chem. Res., 42 (2009), pp.409-418.

Google Scholar

[2] A. Y. Khodakov, C Wei and P. Fongarland, Chem. Rev., 107 (2007), pp.1692-1744.

Google Scholar

[3] K. J. Uffalussy, B. K. Captain, R. D. Adams, A. B. Hungria, J. R. Monnier and M. D. Amiridis, Acs. Catal., 1 (2011), pp.1710-1718.

DOI: 10.1021/cs2003559

Google Scholar

[4] P. Himadri, B. Sumit and G. Kumar, Organometallics, 22 (2003), pp.3019-3021.

Google Scholar

[5] B.C. Gates, J. Mol. Catal. A-Chem., 163 (2000), p.55–65.

Google Scholar

[6] K. M. Neyman, G. N. Vayssilov and N. Ro¨sch, J. Org. Chem., 689 (2004), p.4384–4394.

Google Scholar

[7] B.G. Johson, M. Rameswaran, M.D. Patil, G. Muralis and C.H. Bartholomew, Catal. Today, 6 (1989), pp.81-88.

Google Scholar

[8] J. H. Ye, H. Q. Su, F. H. Bai, Appl. Organomet. Chem., 23 (2009), pp.86-90.

Google Scholar

[9] J. M. Basset, A. Theolier, D. Commereuc and Y. Chauvin, J. Organometall. Chem., 273 (1985), p.147.

Google Scholar

[10] H. P. Withers, Jr., K. F. Eliezer and J. W. Mitchell, Ind. Eng. Chem. Res., 29 (1990), p.1807.

Google Scholar

[11] R. Hemmerich, W. Keim and M. Roper, J. Chem. Soc. Chem. Commun., (1983), 428.

Google Scholar

[12] M. Roper, R. Hemmerich and W. Keim, Chemie Ingenieur Tech., 56 (1984), p.152.

Google Scholar

[13] D. C. Bailey and S. H. Langer, Chem. Rev., 81 (1981), p.131.

Google Scholar

[14] A. Siani, B. Captain, O. S. Alexeev, E. Stafyla, A. B. Hungria et al, Langmuir, 22 (2006), pp.5160-5167.

Google Scholar

[15] L. Huang, Y. Xu, W. Guo, A. Liu, D. Li and X. Guo, Catal. Lett., 32 (1995), p.61.

Google Scholar

[16] X .J. Lei, M. Y. Shang, T. P. Fehlner, etc., J. Organomet. Chem., 541 (1997), pp.57-70.

Google Scholar