Adsorption of Cu2+ from Aqueous Solution by Crosslinked Carboxymethyl Tamarind

Article Preview

Abstract:

Crosslinked carboxymethyl tamarind (CCMTKP) with degree of substitution (DS) 0.42, 0.64 and 0.88 were prepared through reaction of sodium monochloroacetic acid (SMCA), epichlorohydrin (ECH) and tamarind kernel polysaccharide (TKP) and used to adsorb Cu2+ from aqueous solution. The appropriate range for pH was 2-6. The adsorption capacity rapidly reached equilibrium within 15 min and adsorption followed second-order kinetic equation. The adsorption of Cu2+ is well followed as the Langmuir isotherm and the maximum adsorption capacity (Qm) was 68.03 mg/g. The regeneration study indicates that CCMTKP could be used repeatedly without significantly changing their adsorption capacities.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 781-784)

Pages:

2100-2105

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Fenglian Fu, Liping Xie, Bing Tanga, Qi Wang and Shuxian jiang: Chemical Engineering Journal Vol. 189–190 (2012), p.283–287.

Google Scholar

[2] T.S. Anirudhan and P.G. Radhakrishnan: J. Chem. Thermodynamics Vol. 40 (2008), p.702–709.

Google Scholar

[3] G. McMullan, C. Meehan, A. Conneely, N. Kirby, T. Robinson and P. Nigam: Appl. Microbiol. Biotechnol. Vol. 56 (2001), p.81–87.

Google Scholar

[4] B.S. Kim and S. -T. Lim: Carbohydrate Polymers Vol. 39 (1999), p.217–223.

Google Scholar

[5] Rogério Laus, Thiago G. Costa, Bruno Szpoganicz and Valfredo T. Fávere: Journal of Hazardous Materials Vol. 183 (2010), p.233–241.

Google Scholar

[6] Ngah W.S.W., Endud C.S. and Mayanar R.: React. Funct. Polym. Vol. 50 (2002), p.181–190.

Google Scholar

[7] Chunmei Niu, Wenhui Wu, Zhu Wang, Shumin Li and Jianquan Wang: Journal of Hazardous Materials Vol. 141 (2007), p.209–214.

Google Scholar

[8] E.M.M. Del Valle: Proc. Biochem. Vol. 39 (2004), p.1033–1046.

Google Scholar

[9] Uttam C. Paul, Avinash P. Manian, Barbora Siroká, Heinz Duelli and Thomas Bechtold: Carbohydrate Polymers Vol. 87 (2012), p.695–700.

DOI: 10.1016/j.carbpol.2011.08.049

Google Scholar

[10] Iain E.P., Taylor and Edward D.T. Atkins : FEBS 2290, Vol. 181(1984), p.300–302.

Google Scholar

[11] Goyal Puja, Kumar Vineet and Sharma Pradeep: Carbohydrate Polymers Vol. 69 (2007), p.251–255.

Google Scholar

[12] Sumathi. S. and Alok, R.: Journal of Pharmacy and Pharmaceutial Sciences Vol. 59(2002), pp.339-350.

Google Scholar

[13] Abo-Shosha, M. H., Ibrahim, N. A., Allam, E., and El-Zairy, E.: Carbohydrate Polymers, Vol. 74 (2008), pp.241-249.

DOI: 10.1016/j.carbpol.2008.02.011

Google Scholar

[14] Yuan-fan Zhao: Jourmal of West China Forestry Science, 2006, Vol. 35(4), pp.109-111, 133.

Google Scholar

[15] Hui Ruan, Qihe Chen, Mingliang Fu, Qiong Xu and Guoqing He: Food Chemistry Vol. 114 (2009), pp.81-86.

Google Scholar

[16] A. Denizli, G. Ozkan and M. Yakup Arica: Journal of Applied Polymer Science Vol. 78 (2000), p.81–89.

Google Scholar

[17] M.S. Chiou and H.Y. Li: Chemosphere Vol. 50(2003), p.1095–1102.

Google Scholar

[18] M.S. Chiou and H.Y. Li: J. Hazard. Mater Vol. 93 (2002), p.233–248.

Google Scholar

[19] B. Nasernejad, T.T. Zadeh, B.B. Pour, M.E. Bygi and A. Zamani: Process Biochem, Vol. 40 (2005), p.1319–1322.

Google Scholar

[20] Ahmet Ozer, Dursun Ozer and Ayla Ozer: Process Biochem Vol. 39 (2004), p.2183–2191.

Google Scholar

[21] K.K. Wong, C.K. Lee, K.S. Low and M.J. Haron: Chemosphere Vol. 50(2003), p.23–28.

Google Scholar