Electrocatalytic Oxidation of Sulfadiazine on a NiO/MWCNT Film Modified Glassy Carbon Electrode

Article Preview

Abstract:

This work describes the preparation of multi-walled carbon nanotubes (MWCNT) and nickel oxide particles (NiO) composite modified electrode. The electrochemical catalytic performance of the new modified electrode toward sulfadiazine was studied by voltammetric method. The modified electrode exhibited good catalytic performance for the electrochemical oxidation of sulfadiazine at potential of 0.9 V, which was 0.2 V lower than that obtained by a normal glassy carbon electrode. The results of amperometric study suggested that the anodic current of the modified electrode linearly increased against the concentration of sulfadiazine in the range 1.0 - 7.9 μM.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 781-784)

Pages:

333-337

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Sheridan, B. Policastro, S. Thomas, D. Rice: J. Agri. Food Chem. 56 (2008), p.3509.

Google Scholar

[2] S. Lamba, S.K. Sanghi, A. Asthana, M. Shelke: Anal. Chim. ACTA 552 (2005), p.110.

Google Scholar

[3] X. Hong, Y. Zhu, J. Ma: Drug test. Anal. 4 (2012), p.1034.

Google Scholar

[4] J. Adrian, H. Font, J. -M. Diserens, F. Sanchez-Baeza, M. -P. Marco: J. Agri. Food Chem. 57 (2009), p.385.

Google Scholar

[5] V. F. Samanidou, E. P. Tolika, I. N. Papadoyannis: Sep. Purif. Rev. 37 (2008), p.327.

Google Scholar

[6] C. Catalano-Pons, S. Bargy, D. Schlecht, M. -D. Tabone, G. Deschenes, A. Bensman, T. Ulinski: Pediatr. Nephrol. 19 (2004), p.928.

DOI: 10.1007/s00467-004-1519-8

Google Scholar

[7] G. -F. Pang, Y. -Z. Cao, J. -J. Zhang, X. -M. Li, Z. -Y. Li, G. -Q. Jia, C. -L. Fan: Anal. Bioanal. Chem. 376 (2003), p.534.

Google Scholar

[8] A. Gobel, C.S. McArdell, M.J. -F. Suter, W. Giger: Anal. Chem. 76 (2004), p.4756.

Google Scholar

[9] J.M. Conley, S.J. Symes, S.A. Kindelberger, S. Richards: J. Chromatogr. A 1185 (2008), p.206.

Google Scholar

[10] W.L. Shelver, N.W. Shappell, M. Franek, F.R. Rubio: J. Agri. Food Chem. 56 (2008), p.6609.

Google Scholar

[11] X. -p. Hong, Y. Zhu, Y. -z. Zhang: J. Zhejiang Univ-Sc. B 13 (2012), p.503.

Google Scholar

[12] J.D. Voorhies, P.N. Adams: Anal. Chem. 30 (1958), p.346.

Google Scholar

[13] A. Preechaworapun, S. Chuanuwatanakul, Y. Einaga, K. Grudpan, S. Motomizu, O. Chailapakul: Talanta, 68 (2006), p.1726.

DOI: 10.1016/j.talanta.2005.08.040

Google Scholar

[14] T.N. Rao, B.V. Sarada, D.A. Tryk, A. Fujishima: J. Electroanal. Chem. 491 (2000), p.175.

Google Scholar

[15] R.T. Kachoosangi, M.M. Musameh, I. Abu-Yousef, J.M. Yousef, S.M. Kanan, L. Xiao, S.G. Davies, A. Russell, R.G. Compton: Anal. Chem. 81 (2009), p.435.

DOI: 10.1021/ac801853r

Google Scholar

[16] J. Wang, M. Musameh, Y. Lin: J. Am. Chem. Soc. 125 (2003), p.2408.

Google Scholar

[17] J. Qiao, S. Tang, Y. Tian, S. Shuang, C. Dong, M.M.F. Choi: Sensor Actuat. B-Chem. 138 (2009), p.402.

Google Scholar

[18] J. Liu, A.G. Rinzler, H. Dai, J.H. Hafner, R.K. Bradley, P.J. Boul, A. Lu, T. Iverson, K. Shelimov, C.B. Huffman, F. Rodriguez-Macias, Y. -S. Shon, T.R. Lee, D.T. Colbert, R. e. Smalley: Science 280 (1998), p.1253.

DOI: 10.1126/science.280.5367.1253

Google Scholar