Impedence Characterization of the Donor Materials Effect on Photoelectrocatalytic Hydrogen Production by Water Splitting Using TiO2 Nanotube Arrays Photoanode

Article Preview

Abstract:

Anatase TiO2 nanotube arrays with about 50nm pore diameter were prepared by anodic oxidation. The effect of the donor materials (sodium hydroxide, methanol and ethylene glycol) on electrochemistry impedance spectroscopy (EIS) and the photocurrent responses of TiO2 nanotube arrays photoanode in the photoelectrochemical cell for splitting water hydrogen production were investigated. The results indicate that all the donor materials enhance the photocurrent responses and reduce the internal reaction resistances of the TiO2 nanotube arrays photoanode. The effect of adding organic donor compounds in the anolyte on charge transfer and photocurrent is superior to the inorganic donor compounds and in turn reduces from the ethylene glycol, methanol to sodium hydroxide. Additionally, it should be highlighted that +0.3V vs. open circuit potential of applied potential on the electrode promotes a suitable charge transfer at semiconductor/electrolyte interface. The flat band potentials of TiO2 nanotube arrays photoanode move to negative direction with donor materials adding in the anolyte which indicates beneficial photoelectrocatalytic hydrogen production by water splitting.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 781-784)

Pages:

352-356

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Zerta, P.R. Schmidt, C. Stiller, H. Landinger.: Int. J. Hydrogen Energy. Vol. 33(2008), p.3021.

Google Scholar

[2] Fujishima, A., Honda, K.: Nature. Vol. 238(1972), p.37.

Google Scholar

[3] A.A. Nada, M.H. Barakat, H.A. Hamed, N.R. Mohamed, T.N. Veziroglu: Int. J. Hydrogen Energy. Vol. 30 (2005), p.687.

Google Scholar

[4] Y. X. Li, G. X. Lu , S. B. Li: Chemosphere. Vol. 52(2003), p.843.

Google Scholar

[5] Z.H. Yin, Y.X. Li, S.Q. Peng, G.X. Lu, S.B. Li: Journal of molecular catalysis (china). Vol. 21(2007), p.155.

Google Scholar

[6] Y. X. Li, Y. Z. Xie, S. Q. Peng, G. X. Lv, S. B. Li: Chemical journal of chinese universities. Vol. 28(2007), p.156.

Google Scholar

[7] T. Lopes, L. Andrade, H. A. Ribeiro, A. Mendes: Int . J . Hydrogen Energy. Vol. 35(2010), p.11601.

Google Scholar

[8] L. Andrade,R. Cruz, H. A. Ribeiro, A. Mendes: Int . J . Hydrogen Energy. Vol. 35(2010), p.8876.

Google Scholar

[9] S.H. Zhang, K.X. Liang, Y. Tan: 2011 International Conference on Remote Sensing, Environment and Transportation Engineering, IEEEXplore, Nanjing(2011), p.6144.

Google Scholar