Comparison of Au, Ag Electrode in Carbon Dioxide Electrochemical Reduction under the same Condition

Article Preview

Abstract:

The electrochemical reduction of carbon dioxide (CO2) has been studied on various metal electrodes including main group and transition elements in aqueous solution. Of these electrodes, silver and gold are found to have catalytic activity for the conversion of CO2 to CO with considerably high Faradaic efficiencies. However, no work has been done to evaluate the electrocatalytical property of these two electrodes in the same electrochemical system under the same condition. In present work, we investicate the electrocatalytical property of Ag and Au electrodes in the same electrolysis cell and under the same condition. We found Au electrode exhibits higher current density and higher faradaic efficiency for CO formation than Ag electrode.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 781-784)

Pages:

362-366

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Hori, H. Wakebe, T. Tsukamoto, O. Koga, Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media, Electrochim. Acta, 39 (1994)1833-1839.

DOI: 10.1016/0013-4686(94)85172-7

Google Scholar

[2] M.L. Marcos, J. Gonzalez-Velasco, A.E. Bolzan, A.J. Arvia, Comparative electrochemical behaviour of CO2 on Pt and Rh electrodes in acid solution, J. Electroanal. Chem. 395 (1995)91-98.

DOI: 10.1016/0022-0728(95)04098-9

Google Scholar

[3] P.A. Christensen, S.J. Higgins, The electrochemical reduction of CO2 to oxalate at a Pt electrode immersed in acetonitrile and coated with polyvinylalcohol[Ni(dppm)2Cl2], J. Electroanal. Chem. 387(1995)127-132.

DOI: 10.1016/0022-0728(95)03949-h

Google Scholar

[4] H. Yoshitaka, T. Kikkawa, G. Muto, K. Ota, Poisoning of surface hydrogen processes on a Pd electrode during electrochemical reduction of carbon dioxide, J. Electroanal. Chem. 396 (1995)491-498.

DOI: 10.1016/0022-0728(95)04106-x

Google Scholar

[5] G. Kyriacou, A. Anagnostopoulos, Electrochemical reduction of CO2 at Cu + Au electrodes, J. Electroanal. Chem. 328 (1992) 233-243.

DOI: 10.1016/0022-0728(92)80181-3

Google Scholar

[6] G. A. Olah, A. Goeppert, G. K. S. Prakash, Chemical Recycling of Carbon Dioxide to Methanol and Dimethyl Ether: From Greenhouse Gas to Renewable, Environmentally Carbon Neutral Fuels and Synthetic Hydrocarbons. Journal of Organic Chemistry, J. Org. Chem. 74 (2009).

DOI: 10.1021/jo801260f

Google Scholar

[7] R. Zevenhoven, S. Eloneva, S. Teir, Chemical fixation of CO2 in carbonates: Routes to valuable products and long-term storage, Catalysis Today 115 (2006) 73-79.

DOI: 10.1016/j.cattod.2006.02.020

Google Scholar

[8] E. E. Barton, D. M. Rampulla, A. B. Bocarsly, Selective Solar-Driven Reduction of CO2 to Methanol Using a Catalyzed p-GaP Based Photoelectrochemical Cell, J. Am. Chem. Soc. 130 (2008) 6342-6344.

DOI: 10.1021/ja0776327

Google Scholar

[9] L.M. Aeshala, S.U. Rahman, A. Verma, Effect of solid polymer electrolyte on electrochemical reduction of CO2, Separation and Purification Technology 94 (2012) 131-137.

DOI: 10.1016/j.seppur.2011.12.030

Google Scholar

[10] T. Yamamoto, D. A. Tryk, A. Fujishima, H. Ohata, Production of syngas plus oxygen from CO2 in a gas-diffusion electrode-based electrolytic cell, Electrochim. Acta. 47 (2002) 3327-3334.

DOI: 10.1016/s0013-4686(02)00253-0

Google Scholar

[11] G. Centi, S. Perathoner, Opportunities and prospects in the chemical recycling of carbon dioxide to fuels, Catalysis Today 148 (2009) 191-205.

DOI: 10.1016/j.cattod.2009.07.075

Google Scholar

[12] P. Hapiot, C. Lagrost, Electrochemical Reactivity in Room-Temperature Ionic Liquids, Chem. Rev. 108(2008)2238-2264.

DOI: 10.1021/cr0680686

Google Scholar

[13] L. V. Haynes, D. T. Sawyer, Electrochemistry of Carbon Dioxide in Dimethyl Sulfoxide at Gold and Mercury Electrodes, Anal. Chem. 39(1967)332-338.

DOI: 10.1021/ac60247a013

Google Scholar

[14] H. Yano, F. Shirai, M. Nakayama, K. Ogura, Electrochemical reduction of CO2 at three-phase (gas/liquid/Solid) and two-phase (liquid/solid) interfaces on Ag electrodes. J. Electroanal. Chem. 533 (2002) 113-118.

DOI: 10.1016/s0022-0728(02)01078-1

Google Scholar

[15] I. Taniguchi, In Modern Aspects of Electrochemistry, Plenum, New York, (1989).

Google Scholar

[16] W. Vielstich, A. Lamm, H. A. Gasteiger, Handbook of Fuel Cells, Wiley, (2003).

Google Scholar

[17] R. P. S. Chaplin and A. A. Wragg, Effects of process conditions and electrode material on reaction pathways for carbon dioxide electroreduction with particular reference to formate formation, J. Appl. Electrochem. 33(2003) 1107-1123.

DOI: 10.1023/b:jach.0000004018.57792.b8

Google Scholar

[18] M. A. Scibioh, B. Viswanathan, Proceedings of the Indian National Science Academy, Part A: Physical Sciences, 70(2004) 407-409.

Google Scholar

[19] M. Mikkelsen, M. Jørgensen, F. C. Krebs, The teraton challenge. A review of fixation and transformation of carbon dioxide, Energy Environ. Sci. 3(2010)43-81.

DOI: 10.1039/b912904a

Google Scholar

[20] P. S. Surdhar, S. P. Mezyk, D. A. Armstrong, Reduction Potential of the CO2·- Radical Anion in Aqueous Solutions, J. Phys. Chem. 93(1989)3360-3363.

DOI: 10.1021/j100345a094

Google Scholar

[21] C. Amatore, Mechanism and Kinetic Characteristics of the Electrochemical Reduction of Carbon Dioxide in Media of Low Proton Availability, J. Am. Chem. Soc. 103(1981)5021-5023.

DOI: 10.1021/ja00407a008

Google Scholar

[22] B.A. Rosen , A. Salehi-Khojin, M.R. Thorson, W. Zhu, D. T. Whipple, P. J. A Kenis, M. I. Masel, Ionic Liquid–Mediated Selective Conversion of CO2 to CO at Low Overpotentials. Science 334(2011)643-644.

DOI: 10.1126/science.1209786

Google Scholar