[1]
Y. Hori, H. Wakebe, T. Tsukamoto, O. Koga, Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media, Electrochim. Acta, 39 (1994)1833-1839.
DOI: 10.1016/0013-4686(94)85172-7
Google Scholar
[2]
M.L. Marcos, J. Gonzalez-Velasco, A.E. Bolzan, A.J. Arvia, Comparative electrochemical behaviour of CO2 on Pt and Rh electrodes in acid solution, J. Electroanal. Chem. 395 (1995)91-98.
DOI: 10.1016/0022-0728(95)04098-9
Google Scholar
[3]
P.A. Christensen, S.J. Higgins, The electrochemical reduction of CO2 to oxalate at a Pt electrode immersed in acetonitrile and coated with polyvinylalcohol[Ni(dppm)2Cl2], J. Electroanal. Chem. 387(1995)127-132.
DOI: 10.1016/0022-0728(95)03949-h
Google Scholar
[4]
H. Yoshitaka, T. Kikkawa, G. Muto, K. Ota, Poisoning of surface hydrogen processes on a Pd electrode during electrochemical reduction of carbon dioxide, J. Electroanal. Chem. 396 (1995)491-498.
DOI: 10.1016/0022-0728(95)04106-x
Google Scholar
[5]
G. Kyriacou, A. Anagnostopoulos, Electrochemical reduction of CO2 at Cu + Au electrodes, J. Electroanal. Chem. 328 (1992) 233-243.
DOI: 10.1016/0022-0728(92)80181-3
Google Scholar
[6]
G. A. Olah, A. Goeppert, G. K. S. Prakash, Chemical Recycling of Carbon Dioxide to Methanol and Dimethyl Ether: From Greenhouse Gas to Renewable, Environmentally Carbon Neutral Fuels and Synthetic Hydrocarbons. Journal of Organic Chemistry, J. Org. Chem. 74 (2009).
DOI: 10.1021/jo801260f
Google Scholar
[7]
R. Zevenhoven, S. Eloneva, S. Teir, Chemical fixation of CO2 in carbonates: Routes to valuable products and long-term storage, Catalysis Today 115 (2006) 73-79.
DOI: 10.1016/j.cattod.2006.02.020
Google Scholar
[8]
E. E. Barton, D. M. Rampulla, A. B. Bocarsly, Selective Solar-Driven Reduction of CO2 to Methanol Using a Catalyzed p-GaP Based Photoelectrochemical Cell, J. Am. Chem. Soc. 130 (2008) 6342-6344.
DOI: 10.1021/ja0776327
Google Scholar
[9]
L.M. Aeshala, S.U. Rahman, A. Verma, Effect of solid polymer electrolyte on electrochemical reduction of CO2, Separation and Purification Technology 94 (2012) 131-137.
DOI: 10.1016/j.seppur.2011.12.030
Google Scholar
[10]
T. Yamamoto, D. A. Tryk, A. Fujishima, H. Ohata, Production of syngas plus oxygen from CO2 in a gas-diffusion electrode-based electrolytic cell, Electrochim. Acta. 47 (2002) 3327-3334.
DOI: 10.1016/s0013-4686(02)00253-0
Google Scholar
[11]
G. Centi, S. Perathoner, Opportunities and prospects in the chemical recycling of carbon dioxide to fuels, Catalysis Today 148 (2009) 191-205.
DOI: 10.1016/j.cattod.2009.07.075
Google Scholar
[12]
P. Hapiot, C. Lagrost, Electrochemical Reactivity in Room-Temperature Ionic Liquids, Chem. Rev. 108(2008)2238-2264.
DOI: 10.1021/cr0680686
Google Scholar
[13]
L. V. Haynes, D. T. Sawyer, Electrochemistry of Carbon Dioxide in Dimethyl Sulfoxide at Gold and Mercury Electrodes, Anal. Chem. 39(1967)332-338.
DOI: 10.1021/ac60247a013
Google Scholar
[14]
H. Yano, F. Shirai, M. Nakayama, K. Ogura, Electrochemical reduction of CO2 at three-phase (gas/liquid/Solid) and two-phase (liquid/solid) interfaces on Ag electrodes. J. Electroanal. Chem. 533 (2002) 113-118.
DOI: 10.1016/s0022-0728(02)01078-1
Google Scholar
[15]
I. Taniguchi, In Modern Aspects of Electrochemistry, Plenum, New York, (1989).
Google Scholar
[16]
W. Vielstich, A. Lamm, H. A. Gasteiger, Handbook of Fuel Cells, Wiley, (2003).
Google Scholar
[17]
R. P. S. Chaplin and A. A. Wragg, Effects of process conditions and electrode material on reaction pathways for carbon dioxide electroreduction with particular reference to formate formation, J. Appl. Electrochem. 33(2003) 1107-1123.
DOI: 10.1023/b:jach.0000004018.57792.b8
Google Scholar
[18]
M. A. Scibioh, B. Viswanathan, Proceedings of the Indian National Science Academy, Part A: Physical Sciences, 70(2004) 407-409.
Google Scholar
[19]
M. Mikkelsen, M. Jørgensen, F. C. Krebs, The teraton challenge. A review of fixation and transformation of carbon dioxide, Energy Environ. Sci. 3(2010)43-81.
DOI: 10.1039/b912904a
Google Scholar
[20]
P. S. Surdhar, S. P. Mezyk, D. A. Armstrong, Reduction Potential of the CO2·- Radical Anion in Aqueous Solutions, J. Phys. Chem. 93(1989)3360-3363.
DOI: 10.1021/j100345a094
Google Scholar
[21]
C. Amatore, Mechanism and Kinetic Characteristics of the Electrochemical Reduction of Carbon Dioxide in Media of Low Proton Availability, J. Am. Chem. Soc. 103(1981)5021-5023.
DOI: 10.1021/ja00407a008
Google Scholar
[22]
B.A. Rosen , A. Salehi-Khojin, M.R. Thorson, W. Zhu, D. T. Whipple, P. J. A Kenis, M. I. Masel, Ionic Liquid–Mediated Selective Conversion of CO2 to CO at Low Overpotentials. Science 334(2011)643-644.
DOI: 10.1126/science.1209786
Google Scholar