Research on the Tensile Properties of Microcellular PS with Supercritical CO2

Article Preview

Abstract:

Separating the influence of relative density and cell diameter on the tensile properties is very important to the theory research on mechanic properties of microcellular foamed materials. In this article, differences of the influences of relative density and cell diameter on the tensile properties are identified by the foaming PS in constrained mold. The effects of relative density and foaming process conditions such as foaming temperature, foaming time and saturated pressure on the tensile strength and Youngs modulus are analyzed. The results show that relative density is the only structural variable of Youngs modulus and Youngs modulus is not relative to cell diameter. Youngs modulus is in proportion to relative density. Tensile stress of microcellular PS is in contrast to cell diameter, decreases with increasing foaming time and foaming temperature and increases with saturated pressure.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 781-784)

Pages:

395-402

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.E. Martini, N.P. Suh and F.A. Waldman U.S. Patent 4, 473, 665. (1984).

Google Scholar

[2] D.L. Tomasko, H.B. Li and D.H. Liu: Ind. Eng. Chem. Res Vol. 42 (2003), p.6431.

Google Scholar

[3] L.J. White,V. Hutter and H.Y. Tai: Acta. Biomater Vol. 8 (2012), p.61.

Google Scholar

[4] M. Shimbo, I. Higashitani and Y . Miyano: J. CELL. PLAST Vol. 43 (2007), p.157.

Google Scholar

[5] K. Nadella, V. Kumar: Experimental analysis of nano and engineering materials and structure (2007).

Google Scholar

[6] M.N. Bureau, V. Kumar: J. CELL . PLAST Vol. 42 (2006), p.229.

Google Scholar

[7] V. Kumar, M. Vanderwel and J. Weller: J. Eng. Mater. Technol Vol. 116 (1994), p.439.

Google Scholar

[8] S. Doroudiani, M.T. Kortschot: J. Appl. Polym. Sci Vol. 90 (2003), p.1427.

Google Scholar

[9] D. Miller, V. Kumar.: Polym Vol. 52 (2011), p.2910.

Google Scholar

[10] V. Kumar, M. Van Der Wel: Spe Tech Pap 49th ANTEC (1991).

Google Scholar

[11] J.B. Bao, T. Liu, L. Zhao: Polym Vol. 53 (2012), p.5982.

Google Scholar

[12] J.D. Yoon, S.W. Cha: Polym. Test Vol. 20 (2001), p.287.

Google Scholar

[13] H.L. Sun, G.S. Sur and J.E. Mark: Eur. Polym. J Vol. 38 (2002), p.2373.

Google Scholar

[14] M.E. Kabir, M.C. Saha and S. Jeelani: Mater. Sci. Eng Vol. 429 (2006), p.225.

Google Scholar

[15] Z. Fu, in. The strength and vandalism of polymer materials: (Beijing industry press Beijing 2005).

Google Scholar

[16] E. Reverchon, S. Cardea: J. Supercrit. Fluids Vol. 40 (2007), p.144.

Google Scholar

[17] M.A. Jacobs, M.F. Kemmere, J.T.F. Keurentjes: Polym Vol. 45 (2004), p.7539.

Google Scholar