Drug Release Mechanism of Fast Temperature-Responsive Soy Protein/PNIPAAm IPN Hydrogels

Article Preview

Abstract:

Fast temperature-responsive interpenetrating polymer network hydrogels based on soy protein and poly(N-isopropylacrylamide) (PNIPAAm) were prepared using the sodium bicarbonate (NaHCO3) solutions as the reaction medium. The structure and properties were characterized using Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The bovine serum albumin (BSA) release behaviors and release mechanism were also investigated. The results show that the proposed hydrogels have high porous structures and have a fast release rate. The BSA release mechanism belongs to an anomalous transport and the Fickian contribution is dominant. The proposed hydrogels may have the potential applications in the field of biomedical materials such as in the controlled release of drugs.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 781-784)

Pages:

803-807

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Liu, Y. Cui, G. Yin and L. Luo: J. Biobased Mater. Bioenergy Vol. 3 (2009), p.437.

Google Scholar

[2] A. Sionkowska: Prog. Polym. Sci. Vol. 36 (2011), p.1254.

Google Scholar

[3] K.Y. Lee and S.H. Yuk: Prog. Polym. Sci. Vol. 32 (2007), p.669.

Google Scholar

[4] N. Gupta and A.K. Srivastava: Polym. Int. Vol. 35 (1994), p.109.

Google Scholar

[5] Y.S. Lipatov: Prog. Polym. Sci. Vol. 27 (2002), p.1721.

Google Scholar

[6] C.M. Vaz, P.F.N.M. van-Doeveren, R.L. Reis and A.M. Cunha: Polymer Vol. 44 (2003), p.5983.

Google Scholar

[7] H. Zheng, Z.Y. Zhou, Y. Chen, J. Huang and F.L. Xiong: J. Appl. Polym. Sci. Vol. 106 (2007), p.1034.

Google Scholar

[8] R. Snyders, K.I. Shingel, O. Zabeida, C. Roberge, M.P. Faure and L. Martinu: J. Biomed. Mater. Res. Vol. 83A (2007), p.88.

DOI: 10.1002/jbm.a.31217

Google Scholar

[9] R. Yoshida, K. Uchida, Y. Kaneko, K. Sakai, A. Kikuchi, Y. Sakurai and T. Okano: Nature Vol. 374 (1995), p.240.

Google Scholar

[10] J. Zhang, R. Xie, S.B. Zhang, C.J. Cheng, X.J. Ju and L.Y. Chu: Polymer Vol. 50 (2009), p.2516.

Google Scholar

[11] J.P.K. Tan and K.C. Tam: J. Control. Rel. Vol. 118 (2007), p.87.

Google Scholar

[12] E. Kohli, H.Y. Han, A.D. Zeman and S.V. Vinogradov: J. Control. Rel. Vol. 121 (2007), p.19.

Google Scholar

[13] L.L. Yue, R. Xie, J. Wei, X.J. Ju, W. Wang and L.Y. Chu: J. Colloid. Interf. Sci. Vol. 377 (2012), p.137.

Google Scholar

[14] Y. Liu and Y. Cui: Polym. Int. Vol. 60 (2011), p.117.

Google Scholar

[15] O. Okay: Prog. Polym. Sci. Vol. 25 (2000), p.711.

Google Scholar

[16] A. Lozsan: Colloid Polym. Sci. Vol. 290 (2012), p.1561.

Google Scholar

[17] Y. Liu, Y. Cui, G. Yin and H. Ma: Iran. Polym. J. Vol. 18 (2009), p.339.

Google Scholar

[18] P.L. Ritger and N.A. Peppas: J. Control. Rel. Vol. 5 (1987), p.37.

Google Scholar

[19] N.A. Peppas and J.J. Sahlin: Int. J. Pharmaceut. Vol. 57 (1989), p.169.

Google Scholar