Signal Reconstruction Based on a Fusion Compressed Sensing Frame

Article Preview

Abstract:

Greedy algorithms represented by orthogonal matching pursuit (OMP) and subspace pursuit (SP) algorithms are practically used in image processing based upon compressed sensing theory. However, there are two disadvantages: 1)Relatively poor signal reconstruction accuracy; 2) High computation complexity and measurements time. This paper proposes a frame of greedy algorithms obtaining a novel fusion of matching pursuit (FMP), combining the OMP and SP algorithms. FMP unites the two support sets from OMP and SP selecting the most appropriate atoms to achieve secondary screening of the original two support sets, finally realizing the accurate signal reconstruction. Using same test conditions, image reconstruction experiments and stability of Frame, the proposed FMP algorithm can effectively improve signal-to-noise ratio (SNR) with improved reconstruction error. Reconstruction effects using proposed FMP are better than separately using other two greedy algorithms for both high and low resolution images.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 785-786)

Pages:

1315-1323

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Li Shu-Tao, Wei Dan. A survey on compressive sensing. Acta Automatica Sinica, 2009, 35(11): 1369—1377.

DOI: 10.3724/sp.j.1004.2009.01369

Google Scholar

[2] Candes E, Romberg J, Tao T. Robust uncertainty princi-ples: exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, 2006, 52(2): 489-509.

DOI: 10.1109/tit.2005.862083

Google Scholar

[3] Candes E. Compressive sampling. In: Proceedings of International Congress of Mathematicians. Madrid, SPain: European Mathematical Society Publishing House, 2006. 1433-1452.

Google Scholar

[4] Candes E, Tao T. Near optimal signal recovery from random projections: Universal encoding strategies? IEEE Transactions on Information Theory, 2006, 52(12): 5406-5425.

DOI: 10.1109/tit.2006.885507

Google Scholar

[5] Donoho D L. Compressed sensing. IEEE Transactions on Information Theory, 2006, 52(4): 1289—1306.

DOI: 10.1109/tit.2006.871582

Google Scholar

[6] Ma J. Single-pixel remote sensing[J]. IEEE Geoscience and Remote Sensing Letters,6( 2) ,2009, 199-203.

DOI: 10.1109/lgrs.2008.2010959

Google Scholar

[7] Lustig M,Donoho D,Pauly J. SParse MRI: The application of compressed sensing for rapid MR imaging [J]. Magnetic.

DOI: 10.1002/mrm.21391

Google Scholar

[8] Resonance in Medicine, 2007, 58: 1182-1195.

Google Scholar

[9] Yang A. Robust face recognition via SParse representation[J]. IEEE Transactions on Pattern Recognition and Machine ntelligence,2008, 31( 2) : 210-227.

DOI: 10.1109/tpami.2008.79

Google Scholar

[10] Gemmeke J,Cranen B. Using SParse representations for missing data imputation in noise robust SPeech recognition [C]/ /Proceedings of European Signal Process. Conf. Lausanne, Switzerland: European Association for Signal Processing,2008: 987-991.

DOI: 10.1109/icassp.2009.4960666

Google Scholar

[11] Guo H Y,Yang Z. Compressed SPeech signal sensing based on approximate KLT[J]. Journal of Electronics and Information Technology, 2009,31( 12) : 2948-2952.

Google Scholar

[12] S Mallat, Z Zhang. Matching pursuit in a time- frequency dictionary[J] . IEEE Trans Singal Pro cessing , 1993, 41( 12) : 3397-3415.

DOI: 10.1109/78.258082

Google Scholar

[13] J Tropp, A Gilbert. Signal recovery from ran dom measurements via orthogonal matching pursuit[ J] . IEEE Trans. Inform. Theory , 2007, 53 ( 12) : 4655- 4666.

DOI: 10.1109/tit.2007.909108

Google Scholar

[14] D L Donoho, I Drori, Y Tsaig, J L Starck. SParse So lution of Underdetermined Linear Equations by Stagewise Orthogonal Matching Pursuit[ R] . Stanford Univer sity, 2006.

DOI: 10.1109/tit.2011.2173241

Google Scholar

[15] D Needell , Vershynin R. Uniform uncertainty principle and signal recovery via regularized ort hogonal matching pursuit [ J] . Found. Comput Math, 2009, 9( 3) : 317- 334.

DOI: 10.1007/s10208-008-9031-3

Google Scholar

[16] D Needell, J A Tropp. CoSaMP: Iterative signal recovery from incomplete and inaccurate samples [ J] . Appl And Comp Harm. Anal, 2009, 26( 3) : 301- 321.

DOI: 10.1016/j.acha.2008.07.002

Google Scholar

[17] W Dai, O Milenkov ic. SubSPace pursuit for compressive sensing signal reconstruction [ J] . IEEE Trans Inform Theory, 2009, 5, 55( 5) : 2230- 2249.

DOI: 10.1109/tit.2009.2016006

Google Scholar

[18] Natarajan., B. K., Sparse approximate solutions to linear systems, SIAM J. Comput. 24, 227–234 (1995).

DOI: 10.1137/s0097539792240406

Google Scholar

[19] Chen, S. S., Donoho, D. L., and Saunders, M. A., Atomic decomposition by basis pursuit, SIAM Rev. 43, 129–159 (2001).

DOI: 10.1137/s003614450037906x

Google Scholar