[1]
Li Shu-Tao, Wei Dan. A survey on compressive sensing. Acta Automatica Sinica, 2009, 35(11): 1369—1377.
DOI: 10.3724/sp.j.1004.2009.01369
Google Scholar
[2]
Candes E, Romberg J, Tao T. Robust uncertainty princi-ples: exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, 2006, 52(2): 489-509.
DOI: 10.1109/tit.2005.862083
Google Scholar
[3]
Candes E. Compressive sampling. In: Proceedings of International Congress of Mathematicians. Madrid, SPain: European Mathematical Society Publishing House, 2006. 1433-1452.
Google Scholar
[4]
Candes E, Tao T. Near optimal signal recovery from random projections: Universal encoding strategies? IEEE Transactions on Information Theory, 2006, 52(12): 5406-5425.
DOI: 10.1109/tit.2006.885507
Google Scholar
[5]
Donoho D L. Compressed sensing. IEEE Transactions on Information Theory, 2006, 52(4): 1289—1306.
DOI: 10.1109/tit.2006.871582
Google Scholar
[6]
Ma J. Single-pixel remote sensing[J]. IEEE Geoscience and Remote Sensing Letters,6( 2) ,2009, 199-203.
DOI: 10.1109/lgrs.2008.2010959
Google Scholar
[7]
Lustig M,Donoho D,Pauly J. SParse MRI: The application of compressed sensing for rapid MR imaging [J]. Magnetic.
DOI: 10.1002/mrm.21391
Google Scholar
[8]
Resonance in Medicine, 2007, 58: 1182-1195.
Google Scholar
[9]
Yang A. Robust face recognition via SParse representation[J]. IEEE Transactions on Pattern Recognition and Machine ntelligence,2008, 31( 2) : 210-227.
DOI: 10.1109/tpami.2008.79
Google Scholar
[10]
Gemmeke J,Cranen B. Using SParse representations for missing data imputation in noise robust SPeech recognition [C]/ /Proceedings of European Signal Process. Conf. Lausanne, Switzerland: European Association for Signal Processing,2008: 987-991.
DOI: 10.1109/icassp.2009.4960666
Google Scholar
[11]
Guo H Y,Yang Z. Compressed SPeech signal sensing based on approximate KLT[J]. Journal of Electronics and Information Technology, 2009,31( 12) : 2948-2952.
Google Scholar
[12]
S Mallat, Z Zhang. Matching pursuit in a time- frequency dictionary[J] . IEEE Trans Singal Pro cessing , 1993, 41( 12) : 3397-3415.
DOI: 10.1109/78.258082
Google Scholar
[13]
J Tropp, A Gilbert. Signal recovery from ran dom measurements via orthogonal matching pursuit[ J] . IEEE Trans. Inform. Theory , 2007, 53 ( 12) : 4655- 4666.
DOI: 10.1109/tit.2007.909108
Google Scholar
[14]
D L Donoho, I Drori, Y Tsaig, J L Starck. SParse So lution of Underdetermined Linear Equations by Stagewise Orthogonal Matching Pursuit[ R] . Stanford Univer sity, 2006.
DOI: 10.1109/tit.2011.2173241
Google Scholar
[15]
D Needell , Vershynin R. Uniform uncertainty principle and signal recovery via regularized ort hogonal matching pursuit [ J] . Found. Comput Math, 2009, 9( 3) : 317- 334.
DOI: 10.1007/s10208-008-9031-3
Google Scholar
[16]
D Needell, J A Tropp. CoSaMP: Iterative signal recovery from incomplete and inaccurate samples [ J] . Appl And Comp Harm. Anal, 2009, 26( 3) : 301- 321.
DOI: 10.1016/j.acha.2008.07.002
Google Scholar
[17]
W Dai, O Milenkov ic. SubSPace pursuit for compressive sensing signal reconstruction [ J] . IEEE Trans Inform Theory, 2009, 5, 55( 5) : 2230- 2249.
DOI: 10.1109/tit.2009.2016006
Google Scholar
[18]
Natarajan., B. K., Sparse approximate solutions to linear systems, SIAM J. Comput. 24, 227–234 (1995).
DOI: 10.1137/s0097539792240406
Google Scholar
[19]
Chen, S. S., Donoho, D. L., and Saunders, M. A., Atomic decomposition by basis pursuit, SIAM Rev. 43, 129–159 (2001).
DOI: 10.1137/s003614450037906x
Google Scholar