Identification of Nonlinear Systems Using Parallel Laguerre-NN Model

Article Preview

Abstract:

In this paper, a nonlinear system identification framework using parallel linear-plus-neural networks model is developed. The framework is established by combining a linear Laguerre filter model and a nonlinear neural networks (NN) model in a parallel structure. The main advantage of the proposed parallel model is that by having a linear model as the backbone of the overall structure, reasonable models will always be obtained. In addition, such structure provides great potential for further study on extrapolation benefits and control. Similar performance of proposed method with other conventional nonlinear models has been observed and reported, indicating the effectiveness of the proposed model in identifying nonlinear systems.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 785-786)

Pages:

1430-1436

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Ljung, L., Perspectives on system identification. Annual Reviews in Control, 2010. 34(1): pp.1-12.

Google Scholar

[2] Ou, J. and Rhinehart, R.R., Grouped-neural network modeling for model predictive control. ISA Transactions, 2002. 41(2): pp.195-202.

DOI: 10.1016/s0019-0578(07)60079-2

Google Scholar

[3] Ou, J. and Rhinehart, R.R., Grouped neural network model-predictive control. Control Engineering Practice, 2003. 11(7): pp.723-732.

DOI: 10.1016/s0967-0661(02)00184-3

Google Scholar

[4] Abdelazim, T. and Malik, O.P., Identification of nonlinear systems by Takagi–Sugeno fuzzy logic grey box modeling for real-time control. Control Engineering Practice, 2005. 13(12): pp.1489-1498.

DOI: 10.1016/j.conengprac.2005.03.009

Google Scholar

[5] Aadaleesan, P., Miglan, N., Sharma, R., and Saha, P., Nonlinear system identification using Wiener type Laguerre–Wavelet network model. Chemical Engineering Science, 2008. 63(15): pp.3932-3941.

DOI: 10.1016/j.ces.2008.04.043

Google Scholar

[6] Arefi, M.M., Montazeri, A., Poshtan, J., and Jahed-Motlagh, M.R., Wiener-neural identification and predictive control of a more realistic plug-flow tubular reactor. Chemical Engineering Journal, 2008. 138(1–3): pp.274-282.

DOI: 10.1016/j.cej.2007.05.044

Google Scholar

[7] Arto, V., Hannu, P., and Halme, A., Modeling of chromatographic separation process with Wiener-MLP representation. Journal of Process Control, 2001. 11(5): pp.443-458.

DOI: 10.1016/s0959-1524(00)00053-6

Google Scholar

[8] Hsu, Y. -L. and Wang, J. -S., A Wiener-type recurrent neural network and its control strategy for nonlinear dynamic applications. Journal of Process Control, 2009. 19(6): pp.942-953.

DOI: 10.1016/j.jprocont.2008.12.002

Google Scholar

[9] Kalafatis, A., Arifin, N., Wang, L., and Cluett, W.R., A new approach to the identification of pH processes based on the Wiener model. Chemical Engineering Science, 1995. 50(23): pp.3693-3701.

DOI: 10.1016/0009-2509(95)00214-p

Google Scholar

[10] Lawryńczuk, M., Computationally efficient nonlinear predictive control based on neural Wiener models. Neurocomputing, 2010. 74(1–3): pp.401-417.

DOI: 10.1016/j.neucom.2010.03.014

Google Scholar

[11] Mahmoodi, S., Poshtan, J., Jahed-Motlagh, M.R., and Montazeri, A., Nonlinear model predictive control of a pH neutralization process based on Wiener–Laguerre model. Chemical Engineering Journal, 2009. 146(3): pp.328-337.

DOI: 10.1016/j.cej.2008.06.010

Google Scholar

[12] Shafiee, G., Arefi, M.M., Jahed-Motlagh, M.R., and Jalali, A.A., Nonlinear predictive control of a polymerization reactor based on piecewise linear Wiener model. Chemical Engineering Journal, 2008. 143(1–3): pp.282-292.

DOI: 10.1016/j.cej.2008.05.013

Google Scholar

[13] Sjöberg, J., Zhang, Q., Ljung, L., Benveniste, A., Delyon, B., Glorennec, P. -Y., Hjalmarsson, H., and Juditsky, A., Nonlinear black-box modeling in system identification: a unified overview. Automatica, 1995. 31(12): pp.1691-1724.

DOI: 10.1016/0005-1098(95)00120-8

Google Scholar

[14] Nelles, O., Nonlinear System Identification: From Classical Approaches to Neural Networks and Fuzzy Models. 2001, Berlin, Germany: Springer.

Google Scholar

[15] Piche, S., Sayyar-Rodsari, B., Johnson, D., Gerules, M., Nonlinear Model Predictive Control using Neural Networks, in Proc. IEE Contr. Syst. Mag. . 2000. pp.53-62.

Google Scholar

[16] Zhao, H., Guiver, J., Neelakantan, R., and Biegler, L.T., A nonlinear industrial model predictive controller using integrated PLS and neural net state-space model. Control Engineering Practice, 2001. 9(2): pp.125-133.

DOI: 10.1016/s0967-0661(00)00101-5

Google Scholar

[17] Yasui, T., Moran, A., Hayase, M. . Integration of linear systems and neural networks for identification and control of nonlinear systems. in Proc. 35th SICE Annual Conference (SICE'96). 1996. Tottori.

DOI: 10.1109/sice.1996.865472

Google Scholar

[18] Tufa, L.D., Control Relevant System Identification Using Orthonormal Basis Filter Models, in Chemical Engineering. 2009, UNIVERSITI TEKNOLOGI PETRONAS: Tronoh.

Google Scholar

[19] Lazar, M., Pastravanu, O. , A neural predictive controller for nonlinear systems. Mathematics and Computers in Simulation, 2002. 60: pp.315-324.

DOI: 10.1016/s0378-4754(02)00023-x

Google Scholar