[1]
Ljung, L., Perspectives on system identification. Annual Reviews in Control, 2010. 34(1): pp.1-12.
Google Scholar
[2]
Ou, J. and Rhinehart, R.R., Grouped-neural network modeling for model predictive control. ISA Transactions, 2002. 41(2): pp.195-202.
DOI: 10.1016/s0019-0578(07)60079-2
Google Scholar
[3]
Ou, J. and Rhinehart, R.R., Grouped neural network model-predictive control. Control Engineering Practice, 2003. 11(7): pp.723-732.
DOI: 10.1016/s0967-0661(02)00184-3
Google Scholar
[4]
Abdelazim, T. and Malik, O.P., Identification of nonlinear systems by Takagi–Sugeno fuzzy logic grey box modeling for real-time control. Control Engineering Practice, 2005. 13(12): pp.1489-1498.
DOI: 10.1016/j.conengprac.2005.03.009
Google Scholar
[5]
Aadaleesan, P., Miglan, N., Sharma, R., and Saha, P., Nonlinear system identification using Wiener type Laguerre–Wavelet network model. Chemical Engineering Science, 2008. 63(15): pp.3932-3941.
DOI: 10.1016/j.ces.2008.04.043
Google Scholar
[6]
Arefi, M.M., Montazeri, A., Poshtan, J., and Jahed-Motlagh, M.R., Wiener-neural identification and predictive control of a more realistic plug-flow tubular reactor. Chemical Engineering Journal, 2008. 138(1–3): pp.274-282.
DOI: 10.1016/j.cej.2007.05.044
Google Scholar
[7]
Arto, V., Hannu, P., and Halme, A., Modeling of chromatographic separation process with Wiener-MLP representation. Journal of Process Control, 2001. 11(5): pp.443-458.
DOI: 10.1016/s0959-1524(00)00053-6
Google Scholar
[8]
Hsu, Y. -L. and Wang, J. -S., A Wiener-type recurrent neural network and its control strategy for nonlinear dynamic applications. Journal of Process Control, 2009. 19(6): pp.942-953.
DOI: 10.1016/j.jprocont.2008.12.002
Google Scholar
[9]
Kalafatis, A., Arifin, N., Wang, L., and Cluett, W.R., A new approach to the identification of pH processes based on the Wiener model. Chemical Engineering Science, 1995. 50(23): pp.3693-3701.
DOI: 10.1016/0009-2509(95)00214-p
Google Scholar
[10]
Lawryńczuk, M., Computationally efficient nonlinear predictive control based on neural Wiener models. Neurocomputing, 2010. 74(1–3): pp.401-417.
DOI: 10.1016/j.neucom.2010.03.014
Google Scholar
[11]
Mahmoodi, S., Poshtan, J., Jahed-Motlagh, M.R., and Montazeri, A., Nonlinear model predictive control of a pH neutralization process based on Wiener–Laguerre model. Chemical Engineering Journal, 2009. 146(3): pp.328-337.
DOI: 10.1016/j.cej.2008.06.010
Google Scholar
[12]
Shafiee, G., Arefi, M.M., Jahed-Motlagh, M.R., and Jalali, A.A., Nonlinear predictive control of a polymerization reactor based on piecewise linear Wiener model. Chemical Engineering Journal, 2008. 143(1–3): pp.282-292.
DOI: 10.1016/j.cej.2008.05.013
Google Scholar
[13]
Sjöberg, J., Zhang, Q., Ljung, L., Benveniste, A., Delyon, B., Glorennec, P. -Y., Hjalmarsson, H., and Juditsky, A., Nonlinear black-box modeling in system identification: a unified overview. Automatica, 1995. 31(12): pp.1691-1724.
DOI: 10.1016/0005-1098(95)00120-8
Google Scholar
[14]
Nelles, O., Nonlinear System Identification: From Classical Approaches to Neural Networks and Fuzzy Models. 2001, Berlin, Germany: Springer.
Google Scholar
[15]
Piche, S., Sayyar-Rodsari, B., Johnson, D., Gerules, M., Nonlinear Model Predictive Control using Neural Networks, in Proc. IEE Contr. Syst. Mag. . 2000. pp.53-62.
Google Scholar
[16]
Zhao, H., Guiver, J., Neelakantan, R., and Biegler, L.T., A nonlinear industrial model predictive controller using integrated PLS and neural net state-space model. Control Engineering Practice, 2001. 9(2): pp.125-133.
DOI: 10.1016/s0967-0661(00)00101-5
Google Scholar
[17]
Yasui, T., Moran, A., Hayase, M. . Integration of linear systems and neural networks for identification and control of nonlinear systems. in Proc. 35th SICE Annual Conference (SICE'96). 1996. Tottori.
DOI: 10.1109/sice.1996.865472
Google Scholar
[18]
Tufa, L.D., Control Relevant System Identification Using Orthonormal Basis Filter Models, in Chemical Engineering. 2009, UNIVERSITI TEKNOLOGI PETRONAS: Tronoh.
Google Scholar
[19]
Lazar, M., Pastravanu, O. , A neural predictive controller for nonlinear systems. Mathematics and Computers in Simulation, 2002. 60: pp.315-324.
DOI: 10.1016/s0378-4754(02)00023-x
Google Scholar