Existence and Blow-Up of Solutions for a Degenerate Semilinear Parabolic Equation

Article Preview

Abstract:

This article considers the following degenerate semilinear parabolic initial-boundary value problem,where be constants. We obtained the conditions of global existence and blow-up.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 785-786)

Pages:

1454-1458

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N.E. Dyakevich, Existence, uniqueness, and quenching properties of solutions for degenerate semilinear parabolic problems with second boundary conditions, J. Math. Anal. Appl. 338(2008), 892-901.

DOI: 10.1016/j.jmaa.2007.05.077

Google Scholar

[2] N. Dunford and J.T. Schwartz, Linear Operators. Part II: Spectral Theory. Self Adjoint Operators in Hilbert Space, John Wiley and Sons, New York, (1963).

Google Scholar

[3] O.A. Lady\v{z}enskaja, V.A. Solonikiv and N.N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type, Translations of Mathematical Monographs, vol. 23, American Mathematical Society, Rhode Island, (1967).

DOI: 10.1090/mmono/023

Google Scholar

[4] M.S. Floater, Blow-up at the boundary for degenerate semilinear parabolic equations, Archive for Rational Mechanics and Analysis 114(1)(1991), 57-77.

DOI: 10.1007/bf00375685

Google Scholar

[5] C.Y. Chan, W.Y. Chan, Existence of classical solutions for degenerate semilinear parabolic problems, Appl. Math. Comput. 101(1999) 125-149.

DOI: 10.1016/s0096-3003(98)10002-4

Google Scholar

[6] S. Kaplan, On the growth of solutions of quasi-linear parabolic equations, Commun. Pure Appl. Math. 16(1963)305-330.

DOI: 10.1002/cpa.3160160307

Google Scholar

[7] C.Y. Chan and H.T. Liu, Global existence of solutions for degenerate semilinear parabolic problems, Nonlinear Analysis 34(1998), 617-628.

DOI: 10.1016/s0362-546x(97)00599-3

Google Scholar

[8] C.Y. Chan and W.Y. Chan, Complete blow-up of solutions for degenerate semilinear parabolic first initial-boundary value problems, Appl. Math. Comput. 177(2006), 777-784.

DOI: 10.1016/j.amc.2005.11.093

Google Scholar

[9] H. S. Carslaw, J. C. Jaeger, Conduction of Heat in Solids, second ed., Oxford University Press, Oxford, Great Britain, 1959, pp.9-10.

Google Scholar

[10] C. Y. Chan, P. C. Kong, Channel flow of a viscous fluid in the boundary layer, Quart. Appl. Math. 55(1997) 51-56.

DOI: 10.1090/qam/1433751

Google Scholar

[11] H. Ockendon, Channel flow with temperature-dependent viscosity and internal viscous dissipation, J. Fluid Mech. 93(1979) 737-746.

DOI: 10.1017/s0022112079002007

Google Scholar

[12] C. Y. Chan, P. C. Kong, Quenching for degenerate semilinear parabolic problems, Appl. Math. Comput. 54(1994)17-25.

Google Scholar