[1]
N.E. Dyakevich, Existence, uniqueness, and quenching properties of solutions for degenerate semilinear parabolic problems with second boundary conditions, J. Math. Anal. Appl. 338(2008), 892-901.
DOI: 10.1016/j.jmaa.2007.05.077
Google Scholar
[2]
N. Dunford and J.T. Schwartz, Linear Operators. Part II: Spectral Theory. Self Adjoint Operators in Hilbert Space, John Wiley and Sons, New York, (1963).
Google Scholar
[3]
O.A. Lady\v{z}enskaja, V.A. Solonikiv and N.N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type, Translations of Mathematical Monographs, vol. 23, American Mathematical Society, Rhode Island, (1967).
DOI: 10.1090/mmono/023
Google Scholar
[4]
M.S. Floater, Blow-up at the boundary for degenerate semilinear parabolic equations, Archive for Rational Mechanics and Analysis 114(1)(1991), 57-77.
DOI: 10.1007/bf00375685
Google Scholar
[5]
C.Y. Chan, W.Y. Chan, Existence of classical solutions for degenerate semilinear parabolic problems, Appl. Math. Comput. 101(1999) 125-149.
DOI: 10.1016/s0096-3003(98)10002-4
Google Scholar
[6]
S. Kaplan, On the growth of solutions of quasi-linear parabolic equations, Commun. Pure Appl. Math. 16(1963)305-330.
DOI: 10.1002/cpa.3160160307
Google Scholar
[7]
C.Y. Chan and H.T. Liu, Global existence of solutions for degenerate semilinear parabolic problems, Nonlinear Analysis 34(1998), 617-628.
DOI: 10.1016/s0362-546x(97)00599-3
Google Scholar
[8]
C.Y. Chan and W.Y. Chan, Complete blow-up of solutions for degenerate semilinear parabolic first initial-boundary value problems, Appl. Math. Comput. 177(2006), 777-784.
DOI: 10.1016/j.amc.2005.11.093
Google Scholar
[9]
H. S. Carslaw, J. C. Jaeger, Conduction of Heat in Solids, second ed., Oxford University Press, Oxford, Great Britain, 1959, pp.9-10.
Google Scholar
[10]
C. Y. Chan, P. C. Kong, Channel flow of a viscous fluid in the boundary layer, Quart. Appl. Math. 55(1997) 51-56.
DOI: 10.1090/qam/1433751
Google Scholar
[11]
H. Ockendon, Channel flow with temperature-dependent viscosity and internal viscous dissipation, J. Fluid Mech. 93(1979) 737-746.
DOI: 10.1017/s0022112079002007
Google Scholar
[12]
C. Y. Chan, P. C. Kong, Quenching for degenerate semilinear parabolic problems, Appl. Math. Comput. 54(1994)17-25.
Google Scholar