Preparation and Characterization of Hollow Spheres with Cubic Mesoporous Shell

Article Preview

Abstract:

This work demonstrated an approach of oil/water (O/W) microemulsion on preparation of hollow spheres with mesopores in the shell, in which a cationic surfactant was used as structural directing agent, alkane molecule as mesopore-swelling agent and oil droplets. The morphology and pore architecture of the obtained hollow spheres were characterized by SEM, XRD, TEM and N2 adsorption/desorption isotherms. Cubic (Ia3d) mesopores are present in the shell and provide open channels for mass transport in between the hollow core and outer environment. The obtained hollow spheres with cubic mesoporous shell possess the potential of being used as nanoreactor and nanocontainer in the fields of catalysis and drug delivery.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 785-786)

Pages:

382-385

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Corma, Chem. Rev. Vol. 97 (1997), p.2373.

Google Scholar

[2] B.J. Melde, B.J. Johnson, P.T. Charles, Sensors Vol. 8 (2008), p.5202.

Google Scholar

[3] A. Popat, S.B. Hartono, F. Stahr, J. Liu, S.Z. Qiao, M. Lu, Nanoscales Vol. 3 (2011), p.2801.

Google Scholar

[4] C.Z. Yu, B.Z. Tian, J. Fan, G.D. Stucky, D.Y. Zhao, Chem. Lett. Vol. 31 (2002), p.62.

Google Scholar

[5] Q.H. Xu, Y. Yuan, J.J. Yi, C.L. Ma, Solid State Sci. Vol. 9 (2007), p.732.

Google Scholar

[6] S.M. Yang, I. Sokolov, N. Coombs, C.T. Kresge, G.A. Ozin, Adv. Mater. Vol. 11 (1999), p.1427.

Google Scholar

[7] H. Zhang, J.M. Sun, D. Ma, X.H. Bao, A. Klein-Hoffmann, G. Weinberg, D.S. Su, R. Schlogl, J. Am. Chem. Soc. Vol. 126 (2004), p.7440.

Google Scholar

[8] J. Shah, T.J. Pinnavaia, Chem. Commun. (2005), p.1598.

Google Scholar

[9] E. Mathlowitz, J.S. Jacob, Y.S. Jong, G.P. Carino, D.E. Chickering, P. Chaturvedl, C.A. Santos, K. Vijayaraghavan, S. Montgomery, M. Bassett, C. Morrell, Nature Vol. 386 (1997), p.410.

DOI: 10.1038/386410a0

Google Scholar

[10] H. Huang, E.E. Remsen, J. Am. Chem. Soc. Vol. 121 (1999), p.3805.

Google Scholar

[11] G. Zhu, S. Qiu, O. Terasaki, Y. Wei, J. Am. Chem. Soc. Vol. 123 (2001), p.7723.

Google Scholar

[12] P.J. Bruinsma, A.Y. Kim, J. Liu, S. Baskaran, Chem. Mater. Vol. 9 (1997), p.2507.

Google Scholar

[13] H.P. Lin, C.Y. Mou, S.B. Liu, C.Y. Tang, Chem. Commun. (2001), p. (1970).

Google Scholar

[14] W. Li, X. Sha, W. Dong, Z. Wang, Chem. Commun. (2002), p.2434.

Google Scholar

[15] A. Dong, Y. Wang, Y. Tang, N. Ren, Y. Zhang, Z. Gao, Chem. Mater. Vol. 14 (2002), p.3217.

Google Scholar

[16] S. Sadasivan, G.B. Sukhorukov, J. Colloid Interface Sci. Vol. 304 (2006), p.437.

Google Scholar

[17] Y. Zhu, J. Shi, H. Chen, W. Shen, X. Dong, Micro. Meso. Mater. Vol. 84 (2005), p.218.

Google Scholar

[18] Y. Zhao, H. Wang, Y. Liu, J. Ye, S. Shen, Mater. Lett. Vol. 62 (2008), p.4254.

Google Scholar

[19] Y. Zhu, J. Shi, Y. Li, H. Chen, W. Shen, X. Dong, Micro. Meso. Mater. Vol. 85 (2005), p.75.

Google Scholar