Study on Organic Light-Emitting Diode Based Photonic Crystal Substrate Fabricated by Nanoimprint Lithography Technology

Article Preview

Abstract:

The nanimprint lithography technology was used on the optical glass substrate of organic light-emitting diodes (OLED). By optimizing nanoimprint process 2-dimensional micro-structures were fabricated on the substrate. The parameters of micro-structures such as period, diameter and length were optimized using Finite-difference time-domain (FDTD) and finally, the optical crystal micro-structure with 500nm period, 300nm diameter and 500nm length was fabricated. The basic structure of the devices fabricated on the micro-structure substrate is Glass/ LTO/photonic / ITO/ MoO3/NPB/Alq/LiF/Al. The light outcoupling efficiency can be increased effectively due to the photonic band gap effect produced by photonic crystal structures on the substrate of OLED. The measuring result showed that both the emission spectrum and the light intensity were increased.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 785-786)

Pages:

400-405

Citation:

Online since:

September 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. F. Madigan, M. -H. Lu, and J. C. Sturm: Appl. Phys. Lett., Vol. 76 (2000), p.1650.

Google Scholar

[2] T. Yamasaki, K. Sumioka, and T. Tsutsui: Appl. Phys. Lett., Vol. 76 (2000), p.1243.

Google Scholar

[3] N.K. Patel, S. Cina, and J.H. Burroughes: IEEE, Vol. 8(2002), p.346.

Google Scholar

[4] G. Gu, D. Z. Garbuzov, P. E. Burrows, S. Venkatesh, S. R. Forrest, and M. E. Thompson: Opt. Lett, Vol. 22 (1997) , p.396.

Google Scholar

[5] Y.H. Cheng, J.L. Wu, C.H. Cheng: Appl. Phys. Lett., Vol. 90 (2007), p.91.

Google Scholar

[6] F. Li, X. Li, J. Zhang, Y. Yang, et, al.: Org. Electron, 2007, 8 (5): 635-639.

Google Scholar

[7] K. Saxena, D.S. Mehta, V.K. Rai, R. Srivastava, G. Chauhan, M.N. Kamalasanan:J. Lumin., Vol. 128 (2008), p.525.

Google Scholar

[8] W. Li, R.A. Jones, S.C. Allen, J.C. Heikenfield, et, al.:J. Disp. Tech., Vol. 2, (2006) , p.143.

Google Scholar

[9] T. Nakamura, N. Tsutsumi, N. Juni, H. Fujii, et, al. :J. Appl. Phys., Vol. 97(2005), p.054505.

Google Scholar

[10] J. Lim, S.S. Oh, D.Y. Kim, S.H. Cho, I.T. Kim, S.H. Han, H. Takezoe, E.H. Choi, G.S. Cho, Y.H. Seo, S.O. Kang, B. Park: Opt. Exp., Vol. 14 (2006), p.6564.

DOI: 10.1364/oe.14.006564

Google Scholar

[11] R. Meerheim, R. Nitsche, K. Leo: Appl. Phys. Lett., Vol. 93 (2008) , p.043310.

Google Scholar

[12] N. -F. Chiu, C. -W. Lin, J. -H. Lee, C. -H. Kuan, K. -C. Wu, C.K. Lee: Appl. Phys. Lett., Vol. 91 (2007) , p.083114.

Google Scholar

[13] S. -Y. Hsu, M. -C. Lee, K. -L. Lee, P. -K. Wei: Appl. Phys. Lett., Vol. 92 (2008), p.013303.

Google Scholar

[14] S. Y. Chou, P. R. Krauss, and P. J. Renstrom: Appl. Phys. Lett., Vol. 67(1995) , p.3114.

Google Scholar

[15] S. Y. Chou, P. R. Krauss, and P. J. Renstrom: Science, Vol. 272 (1996) , p.85.

Google Scholar

[16] S. Y. Chou, P. R. Krauss, and P. J. Renstrom: Vac. Sci. Technol., Vol. 14 (1996), p.4129.

Google Scholar

[17] M. Colburn, et al.: SPIE: IV, Vol. 3997(2000), p.453.

Google Scholar

[18] B. J. Choi, et al.: SPIE: V, Vol. 4343(2001), p.436.

Google Scholar

[19] M. Qiu and S. He:J. AppI. Phys., Vol. 87 (2000), p.8268.

Google Scholar

[20] Ichikawa H, Baba T: Appl. Phys. Lett., Vol. 84(2004), p.457.

Google Scholar

[21] CAO Jin, JIANG Xue-yin and Zhang Zhi-lin: Appl. Phys. Lett., Vol. 89(2006) , p.252108.

Google Scholar

[22] S. A. Van Slyke, C. H. Chen, and C. W. Tang: Appl. Phys. Lett., Vol. 69(1996) p.2160.

Google Scholar