Synthesis and Characterization of CuO Nanorods by Hydrothermal Method

Article Preview

Abstract:

This paper reports the synthesis of CuO nanorods from Copper (II) sulphate (CuSO4) aqueous solution under the hydrothermal condition variable concentration of NaOH (aq) at 160 °C for 12 h. The thin films of the nanorods on glass were prepared by dip-coating technique. The structure and chemical natures of the obtained materials were studied using powder X-ray diffraction (XRD), Scanning Electron Microscopy (SEM). The optical properties of the nanorods were also studied by UV-visible spectra. The diffraction peaks were quite identical to those of pure CuO, which can be indexed as the monoclinic structure CuO. The diameters of CuO nanorods vary from 10 nm to 100 nm and the length is about several micrometers. The top-view SEM images be seen clearly that high-density, horizontally scattered nanorod were grown on the product prepared at concentration of NaOH (aq) 10 M at 160 °C for 12 h. The spectral of UV-vis data showed the strong cut off at 336 nm.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 785-786)

Pages:

417-419

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. O. Musa, T. Akomolafe and M. J.: Mater. Solar Cell Vol. 51 (1998), p.305.

Google Scholar

[2] M. A. Dar, Y. S. Kim, W. B. Kim, J. M. Sohn and H. S. Shin: Appl. Surf. Sci. Vol. 254 (2008), p.7477.

Google Scholar

[3] A. H. MacDonald: Nature Vol. 414 (2001), p.409.

Google Scholar

[4] J. Morales, L. Sanchez, F. Martin, J. R. Ramos-Barrado and M. Sanchez: Thin Solid Films Vol. 474 (2005), p.133.

Google Scholar

[5] L. J. Chen, L. P. Li and G. S. Li: J. Alloys Compd. Vol. 464(2008), p.532.

Google Scholar

[6] B. Balamurugan, B. Mehta and S. Shivaprasad: Appl. Phys. Lett. Vol. 79(2001), p.3176.

Google Scholar

[7] B. Liu and H. C. Zeng:J. Am. Chem. Soc: Vol. 126(2004), p.8124.

Google Scholar

[8] P. Gao, Y. J. Chen, H. J. Lv, X. F. Li, Y. Wang and Q. Zhang: Int. J. Hydrogen Energy Vol. 34 (2009), p.3065.

Google Scholar

[9] Y. X. Zhang, M. Huang, M. Kuang, C. P. Liu, J. L. Tan, M. Dong,Y. Yuan, X. L. Zhao and Z. Wen: Int. J. Electrochem. Sci. Vol. 8(2013), pp.1366-1381.

Google Scholar

[10] R. Sahay, P. S. Kumar, V. Aravindan, J. Sundaramurthy, W. C. Ling, S. G. Mhaisalkar, S. Ramakrishna and S. Madhavi: J. Phys. Chem. C Vol. 116(2012), p.18087.

DOI: 10.1021/jp3053949

Google Scholar

[11] C. W. Zou, J. Wang, F. Liang, W. Xie, L. X. Shao and D. J. Fu: Curr. Appl. Phys. Vol. 12 (2012), p.1349.

Google Scholar

[12] V. Dhanasekaran, T. Mahalingam, R. Chandramohan, J.K. Rhee and J. P. Chu: Thin Solid Films Vol. 520(2012), p.6608.

DOI: 10.1016/j.tsf.2012.07.021

Google Scholar

[13] Y.S. Cho and Y.D. Huh: Bull Korean Chem. Soc. Vol. 29 (2008), p.2525.

Google Scholar