[1]
G. Catalan and J.F. Scott, Physics and Applications of Bismuth Ferrite, Adv. Mater. 21 (2009) 2463-2485.
DOI: 10.1002/adma.200802849
Google Scholar
[2]
C. Michel, J.M. Moreau, G.B. Achenbach, R. Gerson, W.J. James, The atomic structure of BiFeO3, Solid State Commun. 7 (1969) 701-704.
DOI: 10.1016/0038-1098(69)90597-3
Google Scholar
[3]
M.M. Kumar, A. Srinivas, S.V. Suryanarayana, Structure property relations in BiFeO3/BaTiO3 solid solutions, J. Appl. Phys. 87 (2000) 855-862.
DOI: 10.1063/1.371953
Google Scholar
[4]
S. Lokovlev, C.H. Solterbeck, M. Kuhnke, M. Es-Souni, Multiferroic BiFeO3 thin films processed via chemical solution deposition: Structural and electrical characterization, J. Appl. Phys. 97 (2005) 094901.
DOI: 10.1063/1.1881776
Google Scholar
[5]
Z.X. Cheng, A.H. Li, X.L. Wang, S.X. Dou, K. Ozawa, H. Kimura, S.J. Zhang and T.R. Shrout, Structure, ferroelectric properties, and magnetic properties of the La-doped bismuth ferrite, J Appl. Phys. 103 (2008) 07E507.
DOI: 10.1063/1.2839325
Google Scholar
[6]
B.F. Yu, M.Y. Li, J. Liu, D.Y. Guo, L. Pei and X.Z. Zhao, Effects of ion doping at different sites on electrical properties of multiferroic BiFeO3 ceramics, J. Phys. D: Appl. Phys. 41 (2008) 065003.
DOI: 10.1088/0022-3727/41/6/065003
Google Scholar
[7]
X.Q. Zhang, Y. Sui, X.J. Wang, Y. Wang, Z. Wang, Effect of Eu substitution on the crystal structure and multiferroic properties of BiFeO3, J. Alloy Compd. 507 (2010) 157-161.
DOI: 10.1016/j.jallcom.2010.07.144
Google Scholar
[8]
K. Prashanthi, B.A. Chalke, K.C. Barick, A. Das, I. Dhiman, V.R. Palkar, Enhancement in multiferroic properties of Bi0. 7-xLaxDy0. 3FeO3 system with removal of La, Solid State Commun. 149 (2009) 188-191.
DOI: 10.1016/j.ssc.2008.11.025
Google Scholar
[9]
D.H. Wang, W.C. Goh, M. Ning, and C.H. Ong, Effect of Ba doping on magnetic, ferroelectric, and magnetoelectric properties in mutiferroic BiFeO3 at room temperature, Appl. Phys. Lett. 88 (2006) 212907.
DOI: 10.1063/1.2208266
Google Scholar
[10]
Y. Wang and C.W. Nan, Enhanced ferroelectricity in Ti-doped multiferroic BiFeO3 thin films, Appl. Phys. Lett. 89 (2006) 052903.
DOI: 10.1063/1.2222242
Google Scholar
[11]
S.T. Zhang, Y. Zhang, M.H. Lu, C.L. Du, Y.F. Chen, Z.G. Liu, Y.Y. Zhu and N.B. Ming, Substitution-induced phase transition and enhanced multiferroic properties of Bi1−xLaxFeO3 ceramics, Appl. Phys. Lett. 88 (2006) 162901.
DOI: 10.1063/1.2195927
Google Scholar
[12]
G.L. Yuan, S.W. Or, J.M. Liu, and Z.G. Liu, Structural transformation and ferroelectromagnetic behavior in single-phase Bi1−xNdxFeO3 multiferroic ceramics, Appl. Phys. Lett. 89 (2006) 052905.
DOI: 10.1063/1.2266992
Google Scholar
[13]
N. Kumar, N. Panwar, B. Gahtori, N. Singh, H. Kishan, V.P.S. Awan, Structural, dielectric and magnetic properties of Pr substituted Bi1−xPrxFeO3 (0≤x≤0. 15) multiferroic compounds, J Alloy Compd. 501 (2010) L29-L32.
DOI: 10.1016/j.jallcom.2010.04.095
Google Scholar
[14]
J. Rodriguez-Carjaval, in: J. Rodriguez-Carjaval (Ed. ), An Introduc- tion to the Program FULLPROF2000 (Version Sept. 2012), Labor- atoire Leon Brillouin (CEACNRS), France, (2005).
Google Scholar
[15]
Q.Q. Ke, A. Kumar, X.J. Lou, K.Y. Zeng and J. Wang, Origin of the enhanced polarization in La and Mg co-substituted BiFeO3 thin film during the fatigue process, Appl. Phys. Lett. 100 (2012) 042902.
DOI: 10.1063/1.3678636
Google Scholar
[16]
F. Azough, R. Freer, M. Thrall, R. Cernik, F. Tuna, D. Collison, Microstructure and Properties of Co-, Ni-, Zn-, Nb- and W-modified Multiferroic BiFeO3 Ceramics, J. Euro. Ceram. Soc. 30 (2010) 727-736.
DOI: 10.1016/j.jeurceramsoc.2009.09.016
Google Scholar