Spectroscopic Investigation of γ-LiAlO2 Ceramic Doped with Tetrahedrally Coordinated Cr3+ Ions

Article Preview

Abstract:

The γ-LiAlO2: Cr3+ ceramics were successfully fabricated using multi-mode cavity microwave furnace, and the samples absorption spectrum was measured at room temperature. There are five bands in the red and near-infrared region. Using the crystal-field theory and introducing the average covalent factor model, we calculated the energy-level splitting of Cr3+ ions in γ-LiAlO2 and successfully explained these bands. These calculation results are in good agreement with the optical experiment data.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 785-786)

Pages:

701-705

Citation:

Online since:

September 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Ezaki, M. Obara, H. Kumagai, K. Toyoda: Appl Phys Lett. Vol. 69(20)(1996), p.2977.

Google Scholar

[2] K. Xu, J. Xu, P.Z. Deng: J . Cryst Growth. Vol. 193(1998), p.127.

Google Scholar

[3] P. Waltereit, O. Brandt, M. Bamsteiner: Phys. Status. Solidi. Vol. 180(2000), p.133.

Google Scholar

[4] P. Waltereit, O. Brandt, M. Bamsteiner: J. Cryst. Growth. Vol. 217(2000), p.143.

Google Scholar

[5] P. Waltereit, O. Brandt, M. Bamsteiner: Nature. Vol. 406(2000), p.865.

Google Scholar

[6] S.I. Hirano, T. Hayashi: J Am Ceram Soc. Vol. 70(3)(1987), p.171.

Google Scholar

[7] J. Jimonez-Becerril, P. Bosch, S. Bulbulian: J Nucl Mater. Vol. 185(1991), p.304.

Google Scholar

[8] Y. Kawamura,M. Nishikawa, K. Tanaka: J Nucl Sci Technol. Vol. 29(5)(1992), p.436.

Google Scholar

[9] W. Lin, X.D. Bai, Y.H. Ling: Rare Met. Mater. Eng. Vol. 32(12)(2003), p.995.

Google Scholar

[10] J. Zou, T.H. Huang: Acta phys. sin. Vol. 55(7)(2006), p.3536.

Google Scholar

[11] T.H. Huang, S.M. Zhou: J. Synth. Cryst. Vol. 36(6)(2007), p.1249.

Google Scholar

[12] S. Kuck: Chem. Phys. Vol. 204(1999), p.387.

Google Scholar

[13] G.L. Peng, Y. Zhuang, J. Zou: J. Synth Cryst. Vol. 34(3)(2005), p.399.

Google Scholar

[14] W.R. Tinga, W.A.G. Voss: Microwave Power Engineering[M]( Academic Press, New York, 1968).

Google Scholar

[15] W.H. Sutton: Am. Ceram. Soc. Bull. Vol. 68(2)(1989), p.376.

Google Scholar

[16] Z.Z. Jiang: Nucl. Tech. Vol. 26(12)(2003), p.956.

Google Scholar

[17] M.G. Zhao, W.L. Yu: Crystal Field Theory(M) (Sichuan Education Press, Chengdu, China, 1988) (in Chinese).

Google Scholar

[18] M.G. Zhao: Crystal Field And Electron Paramagnetic Resonance Theory(M) (Science Press, Beijing, China, 1990) (in Chinese).

Google Scholar

[19] O. Brandt, R. Muralidharan, P. Waltereit: Appl. phys. lett. Vol. 75(1999), p.4019.

Google Scholar

[20] M.G. Zhao, M.L. Du and G.Y. Sen: J. Phys. C: Solid State Phys. Vol. 20(1987), p.5557.

Google Scholar

[21] D. Curie, C. Barthou, B. Canny: J. Chem. Phys. Vol. 61(1974), p.3048.

Google Scholar

[22] M.G. Zhao: The ligand field theory[M] (Guizhou People Press, Guiyang, China, 1986) (in Chinese).

Google Scholar

[23] Y.Y. Yeung, C. Rudowicz: Comput. Chem. Vol. 16(1992), p.207.

Google Scholar