Mutation Analysis of a Thermostable Exo-ß-D-Glucosaminidase from the Hyperthermophilic Archaeon Pyrococcus Horikoshii and Comparison with Two Mesophilic Exo-ß-D-Glucosaminidases

Article Preview

Abstract:

The mechanism of thermostabilization of the thermostable exo-ß-D-glucosaminidase (Bglph) from Pyrococcus horikoshii was investigated. Conserved domains analysis and C-terminal truncated mutation showed that the C-terminal region was indispensable for the enzymes thermostability. Two site directed mutagenesis proteins (C103A and C103AandC550A) were as active as the native enzyme and showed no structural difference with the native enzyme. By comparison with two mesophilic exo-ß-D-glucosaminidases (CsxA and CsxT) from actinomycetes Amycolatopsis orientalis and fungi Trichoderma reesei respectively, it was shown that the amino acids composition of Bglph was consistent with its high thermostability, hydrophobic interactions, homodimerization and ion pairs could play key roles. These results presented the overall properties of the thermostability of Bglph from diverse aspects.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

172-176

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Rothschild, L.J. and Mancinelli, R.L. Nature., 409, (2001) p.1092–1101.

Google Scholar

[2] Vieille, C. and Zeikus, G.J. Microbiol Molecul Biol Rev., 65, (2001) p.1–43.

Google Scholar

[3] Berezovsky, I.N. Chen, W.W. Choi, P.J. and Shakhnovich, E.I. PLoS Comput Biol., 1, (2005) p.322–332.

Google Scholar

[4] Gonzalez, J.M. Masuchi, Y. Robb, F.T. Ammerman, J.W. Maeder, D.L. Yanagibayashi, M. Tamaoka, J. and Kato, C. Extremophiles., 2, (1998) p.123–130.

DOI: 10.1007/s007920050051

Google Scholar

[5] Liu, B. Li, Z. Hong, Y. Ni, J.F. Sheng, D, H, and Shen, Y.L. Biotechnol Lett., 28, (2006) p.1655–1660.

Google Scholar

[6] Liu, B. Ni, J.F. and Shen, Y.L. Acta microbiologica sinica (Chinese)., 46, (2006) p.255–258.

Google Scholar

[7] Nanjo, F. Katsumi, R. and Sakai, K. J Biol Chem., 265, (1990) p.10088–10094.

Google Scholar

[8] Cote, N. Fleury, A. and Dumont-Blanchette, E. Biochem J., 394, (2006) p.675–686.

Google Scholar

[9] Nogawa, M. Takahashi, H. Kashiwagi, A. Ohshima, K. Okada, H. and Morikawa, Y. Appl Environ Microbiol., 64, (1998) p.890–895.

DOI: 10.1128/aem.64.3.890-895.1998

Google Scholar

[10] Ike, M. Isami, K. Tanabe, Y. Nogawa, M. Ogasawara, W. Okada, H. and Morikawa, Y. Appl Microbiol Biotechnol., 72, (2006) p.687–695.

DOI: 10.1007/s00253-006-0320-y

Google Scholar

[11] Tanaka, T. Takahashi, F. Fukui, T. Fujiwara, S. Atomi, H. and Imanaka, T. J Bacteriol., 185, (2003) p.5175–5181.

Google Scholar

[12] Sælensminde, G. Halskau, O. Jr. Helland R, Willassen NP and Jonassen I Extremophiles., 11, (2007) p.585–596.

DOI: 10.1007/s00792-007-0072-3

Google Scholar

[13] Kyte, J. and Doolittle, R.F. J Mol Biol., 157, (1982) p.105–132.

Google Scholar

[14] Lu, B.S. Wang, G.L. and Huang, P.T. Acta microbiologica sinica (Chinese)., 38, (1998) p.20–25.

Google Scholar

[15] Kadowaki, H. Kadowaki, T. Wondisford, F.E. and Taylor, S.I. Gene., 76, (1989) p.161–166.

Google Scholar

[16] Chan, M.K. Mukund, S. Kletzin, A. Adams, M.W. and Rees, D.C. Science., 267, (1995) p.1463–1469.

Google Scholar

[17] Spassov, V.Z. Karshikoff, A.D. and Ladenstein, R. Protein Sci., 4, (1995) p.1516–1527.

Google Scholar

[18] Vogt, G. Woell, S. and Argos, P. J Mol Biol., 269, (1997) p.631–643.

Google Scholar

[19] Vetriani, C. Maeder, D.L. Tolliday, N. Yip, K.S. Stillman, T.J. Britton K.L. Rice, D.W. Klump, H.H. and Robb, F.T. Proc Natl Acad Sci., 95, (1998) p.12300–12305.

DOI: 10.1073/pnas.95.21.12300

Google Scholar

[20] Cambillau, C. and Claverie, J.M. J Biol Chem., 275, (2000) p.32383–32386.

Google Scholar

[21] Huang, S.L. Wu, L.C. Huang, H.D. Liang, H.K. Ko, M.T. and Horng, J.T. Appl Bioinformatics., 3, (2004) p.21–29.

Google Scholar

[22] Tekaia, F. Yeramian, E. and Dujon, B. Gene., 297, (2002) p.51–60.

Google Scholar

[23] Vieille, C. Epting, K.L. Kelly, R.M. and Zeikus, J.G. Eur J Biochem., 268, (2001) p.6291–6301.

Google Scholar

[24] De Farias, S.T. and Bonato, M.C. Genome Biol., 3, (2002) p.1–18.

Google Scholar

[25] Vieille, C. Hess, J.M. Kelly, R.M. and Zeikus, J.G. Appl Environ Microbiol., 61, (1995) p.1867–1875.

Google Scholar

[26] Burley, S.K. and Petsko, G.A. Science., 229, (1985) p.23–28.

Google Scholar

[27] Auerbach, G. Huber, R. and Grattinger, M. Structure., 5, (1997) p.1475–1483.

Google Scholar

[28] Wang, B.J. PhD Thesis, Key laboratory for molecular enzymology of the ministry of education, Jilin university, Changchun, P.R. China. (2004).

Google Scholar

[29] Hollien, J. and Marqusee, S. Proc Natl Acad Sci., 96, (1999) p.13674–13678.

DOI: 10.1073/pnas.96.24.13674

Google Scholar

[30] Littlechild, J.A. Guy, J.E. and Isupov, M.N. Biochem Soc Trans., 32, (2004) p.255–258.

Google Scholar

[31] Singer, G.A. and Hickey, D.A. Gene., 317, (2003) p.39–42.

Google Scholar