Synthesis and Characteristics of Thermo-and pH-Sensitive PNIPAAm/PVP Hydrogels

Article Preview

Abstract:

Poly (N-isopropylacrylamide)(PNIPAAm)/Poly (N-vinylpyrrolidone)(PVP) hydrogels were prepared by irradiating the aqueous solution mixture of NIPAAm and PVP with electron beam. The effects of feed ratio, pH, and temperature on the swelling ratio of the hydrogels were investigated. It appeared that the hydrogels possessed both pH and temperature sensitivity, the lower critical solution temperature (LCST) of PNIPAAm/PVP hydrogels increased with the increasing of PVP content in the copolymers. The experimental results also showed that the hydrogels were ionic strength sensitivity, the swelling ratio decreased sharply when the ionic strength of the solution arrived to a certain critical value.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

190-196

Citation:

Online since:

September 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Hirokawa Y. and Tanaka T. J Chem Phys. Vol. 12 (1984), p.6379.

Google Scholar

[2] Chen G. H. and Hoffman A. S. Nature. Vol. 373 (1995), p.49.

Google Scholar

[3] Lu X. Q., Zhai M. L., Li J. Q. and Ha H. F. Radiat Phys Chem. Vol. 57 (2003), p.477.

Google Scholar

[4] Masci G., Bontempo D. and Crescenzi V. Polymer. Vol. 20 (2002), p.5587.

Google Scholar

[5] Kim S. J., Park S. J. and Kim S. I. Reactive & Functional Polymers. Vol. 55 (2003), p.61.

Google Scholar

[6] Zhang X. Z., Wu D. Q. and Chu C. C. Biomaterials. Vol. 19 (2004), p.4719.

Google Scholar

[7] Chen J. P. and Chiu S. H. Enzyme and Microbial Technology. Vol. 5-6 (2000), p.359.

Google Scholar

[8] Lehto J., Vaaramaa K., Vesteinen E. and Tenhu H. J Appl polym Sci. Vol. 3 (1998), p.355.

Google Scholar

[9] Zhai M. L., Liu N., Li J., Yi M., Li J. Q. and Ha H. F. Radiat Phys Chem. Vol. 3-6(2000), p.481.

Google Scholar

[10] Dong L. C. and Hoffman A. S. J Controlled Release. Vol. 2 (1991), p.141.

Google Scholar

[11] Xue W. and Hamley I. W. Polymer. Vol. 43 (2002), p.3069.

Google Scholar

[12] Senel S., Isikyuruksoy B., Clcek H. and Tuncel A. J Appl polym Sci. Vol. 64 (1997), p.1775.

Google Scholar

[13] Zhang X. Z., Wu D. Q. and Chu C. C. Biomaterials. Vol. 19 (2004), p.3793.

Google Scholar

[14] Yoo M. K., Sung Y. K. and Cho C. S. Polymer. Vol. 41 (2000), p.5713.

Google Scholar

[15] Feil H., Bae Y. H., Feijen J. and Kim S. W. Macromolecules. Vol. 10 (1993), p.2496.

Google Scholar

[16] Schild H. G. and Tirrell D. A. J Phys Chem. Vol. 94 (1990), p.4352.

Google Scholar

[17] Park T. G. and Hoffman A. S. Macromolecules. Vol. 26 (1993), p.5045.

Google Scholar

[18] Liu X. H., Wang X. G. and Liu D. S. Acta Polymeric Sinica. Vol. 3 (2002), p.358.

Google Scholar

[19] Pei Y., Chen J., Yang L. M., Shi L. L., Tao Q., Hui B. J. and Li J. Journal of Biomaterial Science, Polymer Edition. Vol. 5 (2004), p.585.

Google Scholar

[20] Sandler S. R. and Karo W. Polymer Synthesis (Academic, New York, 1977), Vol. Ⅱ. P. 271.

Google Scholar

[21] Tanaka T., Fillmore D., and Sun S. J Phys Rev Lett. Vol. 20 (1980), p.1636.

Google Scholar