Equibiaxial Extensional Viscosity and Network Formation of Wheat Gluten - Xanthan Gum Dough

Article Preview

Abstract:

The equibiaxial extensional viscosity of the doughs prepared from gluten and xanthan gum at three levels was determined in this work. The gluten-xanthan gum mixture exhibited strain rate thinning behavior at constant strain, and can be described by power-law model. The consistency index increased with increasing strain and xanthan gum content, while flow behavior index decreased with increasing strain and increased with increasing xanthan gum content. Cross-links in gluten network increased after xanthan gum addition and the increase magnitude was more markable at higher deformation rate.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

306-310

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. M. Rosell, J. A. Rojas and C. B. de Barber: Food Hydrocolloids, 15 (2001, 75–81.

Google Scholar

[2] T. A. Shittu, R. A. Aminu and E. O. Abulude: Food Hydrocolloids, 23 (2009), 2254–2260.

DOI: 10.1016/j.foodhyd.2009.05.016

Google Scholar

[3] J. P. S. Sidhu and A. S. Bawa: Int. J. of Food Properties, 5 (2002), 1–11.

Google Scholar

[4] E. L. Sliwinski, P. Kolster and T. van Vliet: Rheol. Acta, 43 (2004), 306–320.

Google Scholar

[5] J. A. Rinde, N. W. Tschoegl , and T. L. Smith: J. Sci. Food Agric., 47 (1970), 225–235.

Google Scholar

[6] J. J. Kokelaar, T. van Vliet and A. Prins: J. Cereal Sci., 24 (1996), 199–214.

Google Scholar

[7] E. L. Sliwinski , F. van der Hoef, P. Kolster and T. van Vliet: Rheol. Acta, 43 (2004), 306-320.

DOI: 10.1007/s00397-003-0345-4

Google Scholar

[8] S. Uthayakumaran, M. Newberry, N. Phan-Tien and R. Tanner: Rheol. Acta, 41 (2002), 162–172.

Google Scholar

[9] A. M. Janssen, T. van Vliet and J. M. Vereijken: J. Cereal Sci., 23 (1996), 19–31.

Google Scholar

[10] A. M. Janssen, T. van Vliet and J. M. Vereijken: J. Cereal Sci., 23 (1996), 33–42.

Google Scholar

[11] E. L. Sliwinski, F. van der Hoef, P. Kolster and T. van Vliet. Rheol Acta, 43 (2004): 321–332.

DOI: 10.1007/s00397-003-0345-4

Google Scholar

[12] J. Rouille, G. D. Valle, J. Lefebvre, E. Sliwinski and T. vanVliet: J. Cereal Sci, 42 (2005), 45–57.

Google Scholar

[13] P. R. Soskey, and H. H. Winter: J. Rheol., 29(1985), 493–517.

Google Scholar

[14] J. I. Amemiya and J. A. Menjivar: J. Food Eng., 16(1992), 91–108.

Google Scholar

[15] J. Ferry: Viscoelastic Properties of polymers (John Wiley & Sons, UAS 1980).

Google Scholar

[16] Y. Song, Q. Zheng and Z. Wang: Food Hydrocolloids, 21 (2007), 1290–1295.

Google Scholar

[17] A. Redl, M. H. Morel, J. Bonicel, B. Vergnes and S. Guilbert: Cereal Chem., 76 (1999), 361–370.

DOI: 10.1094/cchem.1999.76.3.361

Google Scholar

[18] S. Domenek, M. -H. Morel, A. Redl and S. Guilbert: Macromol. Symp., 200 (2003): 137-146.

Google Scholar

[19] N. Linlaud, E. Ferrer, M. C. Puppo and C. Ferrero: J. Agric. Food Chem., 59 (2011), 713–719.

Google Scholar

[20] N. E. Linlaud, M. C. Puppo and C. Ferrero: Cereal Chem., 86 (2009), 376–382.

Google Scholar

[21] L. Leibler, M. Rubinstein and R. H. Colby: Macromol., 24 (1991), 4701–4707.

Google Scholar

[22] W. Bushuk, K. Khan and G. McMaster: Ann. Technol. Agric. 29 (1980), 279–294.

Google Scholar

[23] T. Aubry, and M. Moan: J. Rheol., 38 (1994), 1681–1692.

Google Scholar