Hot Carrier Energy and Energy Relaxation Length in a-Se Photoconductive Target

Article Preview

Abstract:

The a-Se HARP (High-gain Avalanche Rushing amorphous Photoconductor) target was prepared, and the avalanche characteristics were investigated. In this paper, to study avalanche multiplication at a high electric field, the lucky-drift model was used. In addition, the energy-and field-dependent energy relaxation length was considered. The avalanche multiplication factor was obtained from the current-voltage characteristic of the a-Se HARP target. The threshold field of the 0.4-μm-thick a-Se HARP target was 0.88×108 V/m. The hot carrier energy at the threshold field for the avalanche multiplication in the 0.4-μm-thick a-Se HARP target was 0.21 eV. The hot carrier energy in the a-Se layer increases linearly as the electric field increases. The hot carrier energy also saturates as the avalanche multiplication factor increases. In addition, the energy relaxation length between the inelastic scattering events in the a-Se layer saturates as the hot carrier energy and the avalanche multiplication factor increase.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

333-336

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Tanioka, J. Yamazaki, K. Shidara, K. Taketoshi, T. Kawamura, S. Ishioka and Y. Takasaki: IEEE Electron Device Lett. Vol. EDL-8 (1987), p.392.

DOI: 10.1109/edl.1987.26671

Google Scholar

[2] M. Kubota, T. Kato, S. Suzuki, H. Maruyama, K. Shidara, K. Tanioka, K. Sameshima, T. Makishima, K. Tsuji, T. Hirai and T. Yoshida: IEEE Trans. Broadcast. Vol. 42 (1996), p.251.

DOI: 10.1109/11.536588

Google Scholar

[3] K. Tanioka, T. Matsubara, Y. Ohkawa, K. Miyakawa, S. Suzuki, T. Takahata, N. Egami, K. Ogusu, A. Kobayashi, T. Hirai, T. Kawai, M. Hombo and T. Yoshida: IEICE Trans. Electron. Vol. E86-C (2003), p.1790.

DOI: 10.1117/12.585434

Google Scholar

[4] Y. Takiguchi, H. Maruyama, M. Kosugi, F. Andoh, T. Kato, K. Tanioka, J. Yamazaki, K. Tsuji and T. Kawamura: IEEE Trans. Electron Devices Vol. 44 (1997), p.1783.

DOI: 10.1109/16.628837

Google Scholar

[5] Y. Takiguchi, K. Osada, M. Nanba, K. Miyakawa, S. Okazaki, T. Yamagishi, K. Tanioka, M. Abe, N. Egami, M. Tanaka and S. Itoh: IEICE Trans. Electron. Vol. E85-C (2002), p. (1916).

DOI: 10.1109/ivelec.2002.999262

Google Scholar

[6] W. Zhao, D. Li, A. Reznik, B.J.M. Lui, D.C. Hunt, J.A. Rowlands, Y. Ohkawa and K. Tanioka: Med. Phys. Vol. 32 (2005), p.2954.

Google Scholar

[7] A. Reznik, S.D. Baranovskii, O. Rubel, K. Jandieri and J.A. Rowlands: phys. stat. sol. (c) Vol. 5 (2008), p.790.

Google Scholar

[8] G. Juska, K. Arlauskas and E. Montrimas: J. Non-Cryst. Solids Vol. 97 & 98 (1987), p.559.

Google Scholar

[9] G. Juska and K. Arlauskas: phys. stat. sol. (a) Vol. 77 (1983), p.387.

Google Scholar

[10] O. Rubel, S.D. Baranovskii, I.P. Zvyagin, P. Thomas and S.O. Kasap: phys. stat. sol. (c) Vol. 1 (2004), p.1186.

Google Scholar

[11] S. Kasap, J.A. Rowlands, S.D. Baranovskii and K. Tanioka: J. Appl. Phys. Vol. 96 (2004), p. (2037).

Google Scholar

[12] A. Reznik, S.D. Baranovskii, O. Rubel, G. Juska, S.O. Kasap, Y. Ohkawa, K. Tanioka and J.A. Rowlands: J. Appl. Phys. Vol. 102 (2007), p.053711.

DOI: 10.1063/1.2776223

Google Scholar

[13] W. -D. Park and K. Tanioka: Jpn. J. Appl. Phys. Vol. 42 (2003), p. L209.

Google Scholar

[14] W. -D. Park and K. Tanioka: Jpn. J. Appl. Phys. Vol. 48 (2009), p. 04C159.

Google Scholar

[15] J.S. Marsland: Solid-St. Electron. Vol. 30 (1987), p.125.

Google Scholar

[16] E. Bringuier: Phys. Rev. B Vol. 49 (1994), p.7974.

Google Scholar

[17] G. Juska: J. Non-Cryst. Solids Vol. 137 & 138 (1991), p.401.

Google Scholar