The Preparation of High Quality CIS Films by Spraying Citrate-Capped Cu11In9 Alloy Nanoparticles Ink and RTP Process

Article Preview

Abstract:

A facile low-cost non-vacuum process for fabrication of high quality CuInSe2 (CIS) films is described, which indicates a promising way for the application in thin film solar cells. First, citrate-capped Cu11In9 alloy nanoparticles are synthesized by hot-injection method after a system research on the different reaction time and Cu-In ratio of the raw materials. From the TEM and XRD results, we can see that uniform spherical nanoparticles with dominant Cu11In9 phase and less particle-to-particle agglomeration are successfully achieved in this study. Then, employing spray and RTP selenization process, high quality CIS films with dense and big grains are obtained, which show the single chalcopyrite structure and the preferred (112) orientation. An energy band gap about 1.01 eV is measured through the absorption spectroscopy measurement in our work.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

382-387

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.A.M. AbuShama, S. Johnston, T. Moriarty, G. Teeter, K. Ramanathan, R. Noufi: Prog. Photovolt. Res. Appl. Vol. 12 (2004), p.39.

DOI: 10.1002/pip.537

Google Scholar

[2] K. Ramanathan, M.A. Contreras, C.L. Perkins, S. Asher, F.S. Hasoon, J. Keane, D. Young, M. Romero, W. Metzger, R. Noufi, J. Ward, A. Duda: Prog. Photovoltaics: Res. Appl. Vol. 11 (2003), p.225.

DOI: 10.1002/pip.494

Google Scholar

[3] J. Guillemoles, U. Rau, L. Kronik, H. Schock, D. Cahen: Adv. Mater. Vol. 11 (1999), p.957.

Google Scholar

[4] E. Ahmed, A. Zegadi, A. E. Hill, R. D. Pilkington, R. D. Tomlinson, A. A. Dost, W. Ahmed, S. Leppävuori, J. Levoska, O. Kusmartseva: Solar Energy Materials and Solar Cells Vol. 36 (1995), p.227.

DOI: 10.1016/0927-0248(94)00175-8

Google Scholar

[5] I. Repins, M.A. Contreras, B. Egaas, C. DeHart, J. Scharf, C.L. Perkins, B. To, R. Noufi: Prog. Photovolt. Res. Appl. Vol. 16 (2008), p.235.

DOI: 10.1002/pip.822

Google Scholar

[6] T. Wada, Y. Matsuo, S. Nomura, Y. Nakamura, A. Miyamura, Y. Chiba, A. Yamada, M. Konagai: physica status solidi (a) Vol. 203 (2006), p.2593.

DOI: 10.1002/pssa.200669652

Google Scholar

[7] C. Eberspacher, C. Fredric, K. Pauls, and J. Serra: Thin Solid Films Vol. 387 (2001), p.18.

DOI: 10.1016/s0040-6090(00)01729-6

Google Scholar

[8] G. Norsworthy, C.R. Leidholm, A. Halani, V.K. Kapur, R. Roe, B.M. Basol, R. Matson: Solar Energy Materials & Solar Cells Vol. 60 (2000), p.127.

DOI: 10.1016/s0927-0248(99)00075-6

Google Scholar

[9] M. G. Faraj, K. Ibrahim, A. Salhin: Optoelectronics and advanced materials-rapid communications Vol. 4 (2010), p. (2092).

Google Scholar

[10] Paifeng Luo, RuzhongZuo, LitaoChen: Solar Energy Materials & Solar Cells Vol. 94 (2010), p.1146.

Google Scholar

[11] V.K. Kapur, A. Bansal, P. Le, O.I. Asensio: Thin Solid Films Vol. 431-432 (2003), p.53.

Google Scholar

[12] M. Varela, E. Bertran, M. Manchon, J. Esteve, and J. L. Morenza: J. Phys. D, Appl. Phys. Vol. 127 (1986), p.19.

Google Scholar

[13] F. O. Adurodija, S. K. Kim, S. D. Kim, J. S. Song, K. H. Yoon, and B. T. Ahn: Sol. Energy Mater. Sol. Cells Vol. 225 (1998), p.55.

Google Scholar

[14] B. M. Basol: Thin Solid Films Vol. 514 (2000), p.361.

Google Scholar

[15] R. N. Bhattacharya, J. F. Hiltner, W. Batchelor, M. A. Contreras, R. N. Noufi, J. R. Sites: Thin Solid Films Vol. 396 (2000), p.361.

DOI: 10.1016/s0040-6090(99)00809-3

Google Scholar

[16] R.N. Bhattacharya, W. Batchelor, J.E. Granata, F. Hasoon, H. Wiesner, R. Ramanathan, J. Keane,R. Noufi: Sol. Energy Mater. Sol. Cells Vol. 83 (1998), p.55.

DOI: 10.1016/s0927-0248(98)00049-x

Google Scholar

[17] M. G. Panthani, V. Akhavan, B. Goodfellow, J. P. Schmidtke, L. Dunn, A. Dodabalapur, P. F. Barbara and B. A. Korgel: J. Am. Chem. Soc. Vol. 130 (2008), p.16770.

DOI: 10.1021/ja805845q

Google Scholar

[18] Q. Guo, S. J. Kim, M. Kar, W. N. Shafarman, R. W. Birkmire, E. A. Stach, R. Agrawal and H. W. Hillhouse: Nano Lett., Vol. 8 (2008), p.2982.

DOI: 10.1021/nl802042g

Google Scholar

[19] Christian Kind, Claus Feldmann, Aina Quintilla, and Erik Ahlswede: Chem. Mater. Vol. 23 (2011), p.5269.

Google Scholar

[20] C.J. Hibberd, E. Chassaing, W. Liu, D.B. Mitzi, D. Lincot, and A.N. Tiwan: Prog. Photovolt: Res. Appl. Vol. 18 (2010), p.434.

Google Scholar

[21] E.P. Zaretskaya, V.F. Gremenok, V. Riede, W. Schmitz, K. Bente, V.B. Zalesski, O.V. Ermakov. J. Phys. Chem. Solids. Vol. 64 (2003), p. (1989).

DOI: 10.1016/s0022-3697(03)00216-6

Google Scholar